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ABSTRACT

In this thesis, an investigation of the stability characteristics of an aircraft which has sustained
damage to a primary control surface was performed. The analysis was performed using wind tunnel
data taken on an F-16 model in a test-conducted by Turhal {12]. The coupled, non-linear, aircraft equi-
librium equations for constant altitude, rectilinear flight were derived. The aircraft stability and con-
trol derivatives were developed and analyzed to identify aerodynamic coupling with implications for an
aircraft with failed control surface(s). Three control schemes which allow for progressively greater in-
dependence among the control surfaces were formulated for use in the evaluation of an aircraft with an
actuator failure of the rudder. The investigations were conductcd at two flight conditions repre-
sentative of the aircraft at cruise and landing approach velocmcs Re)glonS ina/ ﬂ vspac*c\whcrc equi-
librium is obtainable were investigated to identify remaining control authority, drag characteristics, and
aircraft orientation. The matrix decomposition techniques of Singular Value Decomposition and the

Row Reduced Echelon Form of the augmented matrix were used to provide additional insight into the

interrelationship of the control surfaces at different points within the defined trim region.

xlil




CONTROL SURFACE FAILURE
L. INTRODUCTION

-5
oC

Control. It is the essence of practical aerospace flight and has long been recognized as one of
the difficult technical challenges to be addressed as aircraft have gained improved performance.
Modern high performance aircraft have many costly and intricate devices onboard which have the sole
purpose of either enabling the pilot to maintain control of the aircraft or making the task of controlling
the aircraft easier. Yet as Rubertus has noted, {11:1280), these systems presuppose the availability and
functionality of all the control surfaces that they have been designed to employ. In the event that a con-
trol surface is damaged or lost the control law which has been designed to make control of the aircraft
possible has ceased to be valid. He further notes that up to 20 percent of the aircraft lost in combat
have been lost due to damage to the aircrafts Flight Coatrol System (FCS).

In recent years, several methodologies have been advanced under the broad category of
Reconfigurable Flight Control Systems (RFCS) to address the problem of damage to or failure of one
or more coatrol surfaces. That is, techniques that will assess the location and nature of the damage to
the control surface(s) and reconstruct the FCS control law so that the aircraft can continue to fly. The
degree to which these techniques are successful obviously has massive ramifications for aircraft flight
safety, sortic generation in a combat environment, and reliability and maintainability. Most important,
of course, is the return of a pilot who otherwise would have been lost.

In his paper "Self-Repairing Flight Control Systems Overview" [11:1285], Rubertus makes the
following comments,

Analysis must be performed to better define the aircraft characteristics in an im-

paired state. An aircraft with a jammed, floating, or missing control surface will ex-

hibit stability characteristics different than a normal aircraft. The cross-coupling

effects are expected to be significant. Are the cross-coupling terms (driven to zero or
into second and third order effects in current designs) changing sufficiently to be-




come first order effects? Neither current models nor wind tunnel data define what

these effects are. Until the effects are better defined, understocd, a~ iaciudod in the
analyses, the full impact of control reconfiguration will not be known,

The object of this thesis is to provide a greater understanding of the stability characteristics of

an aircralt with daiaaged coutrol surfaces.

Pr i

In the event that a control surface is damaged or becomes inoperable several negative effects
might be encountered. First, the FCS has lost the use of the control power of the failed surface to effect
control over the attitude of the aircraft. For example, in the event that the right aileron is lost the pilot
now has only half of the authority to perform a rolling maneuver that was preseat before the failure. A
second effect is the introduction of coupling effects between the longitudinal and lateral modes of the
aircrafts motion. The loss of half of the horizontal tail, for instance, would have the result that when
the pilot commanded a pitching moment, the aircra’: would also experience unwanted, and unex-
pected, yawing and rolling moments and possibly side force. Thus, not only has the pilot’s maneuvering
ability been reduced, perhaps substantially, but also the introduction of coupling makes it necessary for
him to fly an aircraft with which he is unfamiliar. And of course in a combat environment all this may
be occurring at a time when his attention is required for other tasks [8:3].

There is yet a third effect that becomes most prominent in the event of a control surface ac-
tuator failure that results in the control surface being locked into a positioa other than zero. The "har-
dover" failure of a control surface not only introduces the complications already noted but it also
generates substantial forces and moments which must now be overcome by the remaining "heaithy” sur-
faces in order to prevent departure of the aircraft. The question arises quite naturally that, given a
prescribed failure, is it possible to maintain the aircraft in an equilibrium or trimmed state? This thesis
seeks to address that question, to provide a better understanding of the nature of the problem and the

means available for addressing it.




Previous Work

Raza, [8), investigated techniques for modifying the control laws to compensate for the failure
of either a flaperon or a horizontal tail element. His linear model employed the use of constant coeffi-
cient control derivatives. His model assumed that only small perturbations away from the nominal trim
condition would occur as a result of the control surface failure. Although limited to small deflections
the analysis did incorporate the coupling of the longitudinal and lateral modes and the introduction of
perturbation forces and moments by the failed surface. Reconfigurable Flight Control techniques were
investigated using the AFTI F-16 as an aircraft model by Eslinger [1]. Eslinger investigated a failure of
the aircrafts right horizontal tail such that the tail was left free floating in the airstream. As he notes,
[1,4] the failed control surface in this case does not generate undesirable forces and moments.
Eslinger’s aircraft model utilized constant acrodynamic derivatives at the selected flight conditions.
Weiss et al, [13], investigated a technique for automatically trimming an aircraft where the failure of
the control surface is treated as the introduction of a disturbance away from the nominal trim condi-
tion. Their paper contains a rigorous definition of the linear trim problem [13:402). Although the
analysis they present deals with the runaway trim of the aircraft stabilator they point out that the
failure of the rudder represents the most difficult single control surface failure to be addressed,
[13,405).

In 1986, Turhal, [12], conducted wind tunnel tests to investigate the effect of various types of
control surface failures on an aircrafts acrodynamic stability derivatives. The tests were conducted in
the AFIT five foot wind tunnel using a one-twenticth scale model of a F-16. Three configurations of
the model were tested, with each configuration representing a potential failure mode.

The data collected by Turhal has several interesting features. One feature of interest is that
the data includes information regarding the coupling of the acrodynamic stability derivatives as the

aircraft is placed in an unsymmetric orientation; S nonzero. Secondly, the force and moment coeffi-




cients are recorded for the deflection o a single control surface. For example, the flaperons are usual-
ly deployed asymmetrically as ailerons an . the roling moment for the total aileron would be recorded.
Simply recording the data for total aileron might mask the presence of coupling that is of interest when
the surfaces are deployed independently. In Turhal’s tests, the effect of sideslip angle and Angle of At-
tack (AOA) on the right flaperon, for instance, is imbedded in the data recorded in the tests. Conse-
quently, the control derivatives developed for use in the present thesis will be functions of AOA and
sideslip angle rather then constants developed for the aircraft at a specified trim condition.

At the conclusion of his thesis, Turhal made several recommendations for follow-on work
based on the test data that he had recorded, [12:62]. First, he stated that the optimization studies per-
formed to find trim conditions for th "damaged"aircraft had yielded unsatisfactory results. He postu-
lated that the problem may have been related to the curve fitting that formed on the wind tunnel data.
Second, he suggested that other means of investigating "optimum” trim conditions be explored. Third,
he recommended that a more comprehensive study of the data should be performed numerically to

identify any significant phenomena which might be present.

Purpose

This research will encompass a thorough investigation of the stability characteristics of an
aircraft which has sustained damage to a primary control surface. The presence of significant
aerodynamic coupling will be identified and the interrelationship of the aircraft control derivatives,
which are developed as functions of Angle of Attack (a) and sideslip angle (8), will be examined. Asa
means of gaining insight into the nature of the damaged aircraft the following questions will be ad-
dressed:

A: For a stated flight condition and control surface failure, can a state of equilibrium be

achieved using the remaining functional surfaces?




B: If equilibrium is achievable, how large is the region in @/8 space in which equilibrium may
be obtained? Questions regarding the orientation of the aircraft and the use of available control
authority to achieve this state will also be addressed.

C: Will the use of more advanced control schemes, i.e. allowing the control surfaces currently
on the aircraft to act with greater independence, significantly augment the equilibrium region and/or

improve other aircraft characteristics with-in this space?

Approach

To accomplish the stated purposes of this thesis several specific tasks are accomplished and
represent the major sections of the thesis. The data collected by Turhal is placed in to a functional
form that can be used to perform the desired analysis. In general, these functional representations of
the force and moment coefficients are nonlinear in a and 8, and so the restriction of constant coeffi-
cients is not a limitation imposed on the analysis performed in this thesis. Contour plots of the basic
aerodynamic coefficients are constructed to identify any significant aerodynamic coupling which might
impact the trim investigations. The relative authority of each control surface for each force and mo-
ment is also examined to identify the significance of each surface for achieving trim and for answering
the question of whether the relative importance of the surfaces changes at different points in a/8 .space

An actuator failure of the rudder is assumed to represent the most significant single primary
control surface failure. This assumption is consistent with the findings of Weiss [13:405]. This failure
mode is investigated at two flight conditions which are deemed to be representative of two phases of
the aircrafts flight profile. The equilibrium equations for constant aititude, rectilinear flight are solved
to identify points in a/f space where an equilibrium state is acﬁewble for a specified degree of rudder
failure. Three different control schemes of increasing complexity are employed to investigate how sig-
nificantly the equilibrium region can be altered by employing greater degrees of freedom in the use of

the available control surfaces.




Two math techniques are used to provide a greater insight into the nature of the problem
being addressed. Singular Value Decomposition (SVD) and the Row Reduced Echelon Form (RREF)
are used to analyze the problem. Restructuring the problem via these techniques provides useful infor-
mation regarding not only the null space of the problem, but also illuminates the interaction of the

various control surfaces in achieving a solution to the equilibrium problem.

Presentation

The analysis performed in this thesis is presented in the following chapters. Chapter II details
the techniques used to transform the data collected by Turhal into polynomial functions which can be
used for the equilibrium analysis. Observed aerodynamic coupling of the control and aircraft stability
derivatives is detailed in Chapter ITI. The relative significance of the control surfaces is also discussed
in this chapter. Chapter IV outlines the formulation of the nonlinear equations of motion into the form
that is used to identify the regions of equilibrium for control surface failure. The results of this analysis
are presented and discussed in Chapter V and Chapter VI outlines a summary of the results of this re-

search and recommendations for further study.




Introduction

The analysis performed in this thesis is based on wind tunnel data collected by Turhal, [12],
for a Master’s thesis in 1986. The data preparation phase of the current research involved the forma-
tion of functional representations of the stability derivative data collected in Turhal’s wind tunnel work.
A least squares curve fitting technique was used to develop polynomial functions which describe the
aircraft stability derivatives. Since the equilibrium analysis was a static analysis the dynamic derivatives
of the aircraft were not estimated. In this chapter a short description of the F-16 is given along with a
brief discussion of the tests conducted by Turhal. The functional form of the equations used to

describe the aircraft stability derivatives and the techniques used to develop them are also discussed.

Aircraft Description

The F-16 is a single enginc, low aspect ratio, fighter aircraft currently in the inventory of the
USAF. There are seven control surfaces located on the aircraft which are of interest for the studies to
be performed in this thesis: right and left Leading Edge Flaps (LEFs), right and left Flaperons, right
and left Horizontal Tails, and the rudder. The following paragraphs provide a short discussion of these
control surfaces and their significance for the trim study. The location of each of the control surfaces
may be identified by referring to Figure 1. A detailed discussion of the F-16 may be found in the open
literature in Jane's, [4:345].

Leading Edge Flape (see following page): The LEFs primary function is to vary the camber of
the wing; causing the lift curve to slide to the right as they are deployed. The net effect of this is to

cause CLmax to occur at higher AOA then would be experienced by the clean wing,
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The LEFs are designed to deploy in a symmetric fashion and their deflection is scheduled as a function
of AOA and Mach number. It should be noted that the pilot does not exercise direct control over the

LEFs and so, as they are employed on the current aircraft, thev are not truly a control surface.

Figure 1 F-15 Control Surfaces

Flaperons: When deployed as flaps the flaperons provide direct lift to the aircraft and also
some pitching moment. For control purposes, however, the pilot’s stick can only command the
flaperons to deflect asymmetrically or as ailerons. The flaperons therefore are the primary means by
which rolling moment is applied to the aircraft to execute banking maneuvers.

Horizontal Tails: The horizontal tails, on the other hand, can be employed via the pilot’s stick
in two fashions. If the differential tails are deployed symmetrically they act as an elevator and are used
to exert pitching moment on the aircraft. The tails can also be deployed in an asymmetric manner to

augmeant the rolling moment generated by the flaperons. Simply stated, pulling back on the control




stick will result in the symmetric deflection of the horizontal tails and will pitch the nose of the aircraft
up. Pushing the stick to the side will result in asymmetric deflection of the flaperons and tails resulting
in a rolling maneuver about the axis of the aircraft.

Rudder (see previous page): The rudder is employed in the same fashion as on a conventional

aircraft and is the primary control surface available for yawing the aircraft.

Sign Convention

The following sign convention is adopted for use in this thesis:

1. For the flaperons and the horizontal tails positive deflection is defined Trailing Edge Down
(TED).

2. For the leading edge flaps positive deflection is defined to be Leading Edge Down (LED).

3. Positive deflection of the rudder will be defined as deflection of the rudder toward the left
side of the aircraft. looking forward (port)

4. Positive sideslip angle, B, is defined for the free stream velocity vector approaching from
the right side of the aircraft nose. looking forward (starboard)

5. All the aircraft control and aerodynamic coefficients are recorded in the aircraft Stability

axis system.

F-16 Wind Tunnei Data

In 1986 Turhal, [12], conducted wind tunnel tests to investigate the effect of various types of
control surface failures on an aircrafts acrodynamic coefficients. The tests were conducted in the

AFIT five foot wind tunnel using a one twenticth scale model of a F-16A. All of the tests were con-




ducted at low speeds, holding Mach number at approximately 0.118 and dynamic pressure at 20 pounds
per square foot. For a detailed discussion of the experimental procedure used in recording the test
data see [12:25-34]

Three configurations of the model were tested, with each configuration representing a poten-
tial failure mode. The first configuration had all the control surfaces but one fixed at a zero deflection
angle. The remaining control surface was then placed at a specified deflection and the resulting forces
and moments were recorded. In the second configuration, the left flaperon was allowed to float free.
The remaining surfaces were then cycled through their deflection ranges. As in the first configuration,
only one control surface was deflected at a time. The final configuration, had the left flaperon removed
from the model entirely. As in the prior tests, the effects of the deflection of the remaining control sur-
faces on the forces and moments was then observed. The acrdynamic coefficients calculated by the
wind tunnel data reduction program were recorded in the Stability Axis system.

For each of the configurations noted above the wind tunnel data has been placed into data
sets. The "zero” case represents the data collected when the models controls were all set at zero deflec-
tion and the model was placed at various angles of attack and side slip angles. The same procedure
was used to develop data sets for the right and left leading cdge flaps, the right flaperon, the right
horizontal tail, and the rudder. For the configurations where the left flaperon was floating free or miss-

ing a data set was also developed for the left horizontal tail.

Aerodynamic Forces

The data which is output by the wind tunnel data reduction program are the total aircraft force
and moment coefficients. These coefficients are a non-dimensional representation of the forces and
moments experienced by the aircraft at given a AOA and side slip angle. The aerodynamic coefficients
may be converted into forces and moments in the aircraft Stability axis system via the following relation-

ship:

10




L, =<, gS o
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§_ = Cy qSb (2.6)

The appropriate reference data for the full scale aircraft is given in [12:27], and is represented

Table 1 F-16 Reference Data

Wing Area S 300 Sq Ft
Span b 29ft

MAC C 10.94ft
Cg w 0.35MAC

here in Table 1. By necessity, the data collected in the wind tunnel is taken at a finite number of dis-
crete data points. Turhal’s wind tunnel data, in general, is a function of three variables; that is, the
force and moment coefficients are recorded for a specific setting of angle of attack, sideslip angle, and
single control surface deflection. Since the analysis performed in this research will require data at

points other than those points at which experimental data was collected some functional representation

11




of the data is required. A polynomial is selected as the functional form which will be used to describe

the data. Each aircraft force or moment coefficient may then be described with a polynomial of the fol-

lowing form:
c J o1 14 7 M ¥ o m
ft- L L Ao+ E£E L B a 3é o
j=0 1= 3 &1 =0 n=0 {xm ¢

Note that in general the polynomial will be nonlinear but that & will always be held to a first

power.

E m ici

Turhal’s test included recording force and moment coefficients where all of the control sur-
faces were held at zero deflection and a and 8 were varied. Equation (2.7) shows that the polynomial
used to predict the total force or moment coefficient is composed of two summation terms. The first of
these represents the coefficient sirictly as a function of & and 8 and should describe the wind tunnel
data taken when all of the control surfaces were held at zero. The coefficients, Aij, associated with
each polynomial term were obtained by performing a least squares curve fit on this "zero" case data. A
short discussion of the theory and mathematics involved in the least squares curve fitting technique may
be found by referring to Appendix A.

To accomplish the three dimensional curve fitting of the wind tunnel data a FORTRAN com-
puter code, POLYFITA, was written which will read in the data files compiled by Turhal, request the
order of the polynomial and perform the curve fit. Appendix B contains the FORTRAN codes used to

accomplish the curve fits. Two measures of the "goodness” of the selected polynomials fit of the data

12




were employed to determine the suitability of the polynomial for use in the future analysis. The first
measure of the accuracy of the fit was the calculation of correlation coefficient, r?, for each fit of the

data.

npts f 12
r Cf -C
k=1
5 | exp, analkJ
rr=1-
npts 12 (2.8)
L |c -c
k=1 i exp, mean J

This measure of merit provided a means for estimating how well the polynomial fit captured
the variation in the experimental data. It is possible, through the use of a polynomial of high enough
order, to obtain a curve fit which will pass through each data point. This polynomial will accurately
predict the value of the data at the point at which the data was collected but its behavior between
points may be very ill behaved. The second measure of merit for the curve fits provides a means for
avoiding the selection of such a function. Primarily qualitative, this second measured involved the con-
struction of graphs and contour plots. The graphs, for example Figure 2, provided a direct comparison
of the polynomial fit with the data collected in the tunnel. Ar evaluation of the curve with respect to the
expected behavior of the force or moment coefficients could also be made. For example, the lift coeffi-
cient should be linear in a, the drag a parabolic function of a etc.. It should be noted, however, that a
graph such as Figure 2 requires that the two remaining variables be held constant to see this "slice” of
the curve in the three dimensional variable space. For this reason, the data was also plotted as contour
plots so that the behavior of the data as a function of two variables could be observed. An example of
such a contour plot is Figure 3 and a complete set of these plots may be found in Appendix D. .

The curve fits of all the "zero" case data were accomplished with the noted computer codes

and applying the following criteria.

13
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o 1Keepit accurate. The accuracy of the curve fits was established by trying to achieve
very high r? value, 95 s r? s1.0, and by evaluating the graphs and contour plots.

® 2. Keep it simple. To avoid future numerical problems, and the undesirable behavior
noted above the lowest order polynomial which provided a reasonable level of accuracy

was selected.

Aircraft Control Derivatives

The second summation contained in equation (2.1) represents the contribution of all the con-
trol surfaces to the total force or moment coefficient. The polynomial associated with each control sur-
face is in effect the control derivative associated with that surface. The experimental method employed
for collecting the derivative data assumed that the effects of each control surface could be added
together with the "zero" case to obtain the total aircraft force or moment coefficient. The assumption
that the superposition principle may be applied is premised on linear terms in 8. For this reason, all of

the control derivatives were developed holding the 8 term to a first power.
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The control derivatives were assumed to be of the form

C,aa +C_.A2 +C &
[ fo«S fﬁé fé] (2.9)

which is a linear equation once @ and 8 have been specified. To obtain the coefficients contained in
equation (2.9) the stability data contained in the data sets associated with the respective controls was
curve fit using the program POLYFITB;(see Appendix B). Here the effect of the deflection of the
specified control surface is treated as a perturbation of the force or moment above, or below, the force
or moment experienced by the model with the surfaces set to icro. Hence, the function supplied to
the least squares routine for fitting was the polynomial form arrived at for the "zero” case plus the
terms in equation (2.10). The coefficient which were related to control deflections were then stripped

off to become the descriptors of that control derivative. The r? value for each fitting of the control sur-
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face data sets was compared to a fitting performed with only the "zero” case polynomial terms to insure

that the effect of the control surface was reasonably well represented. This was indicated by a sig-

nificant rise in the value of the correlation coefficient when the & terms were added to the polynomial.

The control derivative predictor equations are presented in Appendix C.

Lateral Blas

In the initial phases of conducting the trim analysis it became evident that the aircraft was

developing significant lateral forces and moments at zero AOA , zero side slip angle, and zero control

deflections. This bias in the lateral data may be seen by observing Figure 4 where the yawing moment




coefficient does not take on a zero value at 8 and @ equal to zero. For an aircraft which is geometrical-
ly symmetrical about the X-Z plane of the aircraft the forces and moments should be zero at this zero
condition, [10:139-156]. In light of this, the predictor equations for the aircraft lateral coefficients
were modified to remove this unresolved bias. The modification was effected by setting the constant
term in each lateral equation equal to zero. The corrected predictor equations are the ones listed in

Appendix C.

Summary

In the data preparation phase of the thesis the wind tunnel data generated by Turhal was
placed into functional forms for later use in the analysis. These functional representations of the
aircraft control and stability derivatives were formed as polynomials which in general are nonlinear in «
and B. Lateral biassing in the wind tunnel data was identified and appropriate changes accomplished

to correct this anomaly.
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l LI A AMIC DERIVATIVE

Introduction

The polynomial equations developed in Chapter II to describe the behavior of the aircraft con-
trol and stability derivatives are nonlinear functions in @ and 8. Through these terms coupling may be
introduced between the longitudinal and lateral modes of the aircraft. A longitudinal coefficient, such
as the pitching moment for instance, may be found to have a significant dependence on side slip angle.
Further, the control derivatives, which are usually treated as constants for a given flight condition, may
in fact exhibit a dependence on @ and 8 which should be noted. Coupling as defined in this thesis does
not refer to inertia effects or the interaction of the various control surfaces. In this research, coupling
refers to two specific effects. First, coupling indicates the presence of stability derivatives which couple
the effect of AOA and sideslip angle together. Second coupling occurs when the failure of a control sur-
face imparts forces and moments to the aircraft which are not usually associated with that surface. As
was noted in Chapter I, Rubertus makes the following comments, " ...The cross-coupling effects are ex-
pected to be significant. Are the cross-coupling terms (driven to zero or into second and third order ef-
fects in current designs) changing sufficiently to become first order effects? " This chapter seeks to

explore this question and its attending implications for the equilibrium analysis addressed in this thesis.
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Aircraft Stability Derivatives

The contour plots of the force and moment coefficients developed in Chapter II provided the
primary means by which coupling was identified. A complete set of the plots may be (ound in Appen-
dix E. Note that there are two plots for each coefficient. The plots labeled "EXP" represent a contour
plot of the experimental data. Plots that are labeled "CF" represent plots of the polynomial fit of the ex-
perimental data.

Figure S represents the variation of the drag coefficient as a function of @ and 8. Note that a
function that is strictly dependent on « would result in contours that intersect the a axis perpendicular-

ly. Conversely, a strict dependence on 8 has contours which show no variation as one moves along the
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a axis. Note that while the drag coefficient exhibits a strong dependence on a, with the characteristic
quadratic term, it also shows a significant dependence on 8. All of the longitudinal coefficients ex-
hibited a similar dependence on 8 and both the polynomial fit and the plotting routine (SURFER)
generated the same characteristic shape. In addition to this, the correlation coefficients developed
for all the longitudinal data indicated a good capture of the behavior of the data and therefor this cou-
pling is assumed to exist.

The lateral derivatives, see Figure 6, exhibited the expected strong dependence on 8., of all the
lateral derivatives the rolling moment coefficient exhibited the strongest a /8 coupling; which may be
observed in Figure 7. Note that the contours break rather sharply at a given AOA and for the aircraft

in an unsymmetric orientation.
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Aircr t jvativ

Given that the control derivatives are not constant values, it is appropriate to address ques-
tions of how they may vary as a function of AOA and sideslip angle. Also, since this thesis involves the
investigation of situations where a control surface has failed it is also important to gain some apprecia-
tion of how important each surface is relative to the others in effecting a given force or moment. To ac-
complish these purposes the control derivatives for the seven surfaces were calculated at different
locations in a / 8 space. As will be seen in Chapter IV control derivatives effecting a given force can be
arranged as a row vector. For this reason, the control derivatives were normalized in a vectorial sense
by creating a vector in 7 space whose magnitude is one. The normalization was accomplished as fol-
lows. First, each control derivative was multiplied by the maximum deflection available for that sur-

face.

C = C x5 3.1y

7 (3.2)
=t ¢
i=1 imax

The normalized derivative is then defined to be:

(3.3)
C
z imax
C ? =
inorm C P
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and will be a number whose magnitude is between zero and one. By observing the relative size of each
component, information can be obtained about the relative importance of each contrbl.

To observe the variation of the normalized derivatives as a function of @ and 8, contour plots
were constructed showing lines of constant values of the normalized derivatives. Several points are
worth remembering in observing these charts, which may be found in Appendix E. First, the plots do
not provide information about the actual value of the control derivative and how it is changing with a
and 8. They indicate how the relationship of that surface is changing relative to the others at different
points. Second, the numbered contours do not represent percentages since it is the sum of the squares
of all the derivatives which are equal to unity. Third, when noting changes that are occurring to the
contour lines it is important to remember that all seven surfaces must be observed to have an accurate
understanding of the changes indicated.

As would be expected, the rudder exerts essentially zero influence on either pitching moment
or the normal force coefficients. The horizontal tails, Figure 8, show that they are the most significant
player with respect to pitching moment; with the primary variation in the normalized derivative occur-
ring as a function of 8. Figure 9 indicates that while the flaperons are not as significant an effector of
pitching moment as the tails they do coatribute to the overall pitching moment. A slight dependence on
a is indicated for the flaperons with in the range examined. The LEFs are relatively smali effectors.
The normal force is most strongly influenced by the flaperons and the horizontal tails; see Figures 10
and 11.

It is in the lateral derivatives that the most dramatic results are observed. The plots for yawing
moment indicate that the rudder, Figure 12, is far and away the most significant surface in effecting this
moment. Figures 13 and 14 illustrate that some yawing capability is exchanged between the flaperons
and the horizontal tails as the angfe of attack is changed. The rudder is also observed to be the most
dominant control surface for introducing side force into the aircraft; see Figure 17. Figure 18 indicates

that the horizontal tails also are capable of generating side force. This capability can be accounted for
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by noting the anhedral in the horizontal tail which produces a component of force in the Y direction
when the horizontal tails are deflected unsymmetrically. Another point of interest in the side force
plots is that the LEFs, whose influence is negligible at low AOA, become more significant as the AOA
is increased; see Figures 15 and 16. At the higher AOA the LEFs make a small, but notable, contribu-
tion to the side force relative to the other surfaces. These plots of side force control derivatives estab-
lish a very significant point for the analysis performed in this thesis; even a relatively small deflection of
the rudder can not be "overpowered” by a maximum asymmetric deflection of the remaining surfaces.

Examining the plots of the rolling moment control derivative, Figure 19, will show that not only
are the rudder contours almost entirely deperdent on a but also that the rolling moment produced by
deflection of the rudder changes sign at 12.9 degrees AOA. This results because the moments are
recorded in the stability axis system and there will be an AOA at which the X Stability axis will pass
through the effective point of application of the side force developed by the rudder. The zero moment
arm results in zero moment about this axis. Again the flaperons and horizontal tails are observed to be
exchanging relative importance as effectors of rolling moment. Note that the islands for the flaperon
and horizontal tail plots appear below and above the zero line on the rudder plot respectively, see
Figures 20 and 21.

Not only did the contour plots of the normalized derivatives provide useful information about
the relative importance of the control derivatives but they also indicated that an error had been made
in developing the control derivatives for the left flaperon and the left horizontal tail. In Chapter II it
was noted that the wind tunnel tests did not provide data for the left flaperon and left horizontal tail
and that it was assumed that the data from the right surfaces could simply be reflected across the X-Z
plane. This was accomplished by negating the sign on the lateral derivatives and assigning the same lon-
gitudinal derivatives. Note that the LEFs Figures 15 and 16 not only exkibit opposite sign but also an
opposite slope as a function of 8. The change in slope results from the fact that the right and left sur-
faces react differently to positive and negative 8. For example, the right leading edge flap becomes

more effective, relative to the left leading edge flap, with positive B since the right LEF is now seeing
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"more of the wind". The initial method for creating the left control derivatives had missed this fact and
while the right and left lateral derivatives appropriately had opposite signs they inappropriately ex-
hibited the same slope. The plots contained in Appendix E and the control derivatives listed in Appen-

dix C have been corrected to be consistent with the behavior described above.

Summary

In this chapter the contour plots of the aircraft stability derivatives were examined to identify
coupling . All of the longitudinal coefficients exhibited a similar variation as a function of . Among
other things, this will be shown to produce a trimmed condition at a lower AOA when the aircraft is in
a slightly unsymmetric orientation. The lateral coefficients showed a significant coupling occurring at
the higher angles of attack, indicating that the requirements for opposing moments for the aircraft in
an unsymmetric orientation will change significantly as AOA is increased. Perhaps the most prominent
result is that the failure of the rudder is demonstrated to be the most significant failure of a single con-
trol surface. Failures of the other surfaces can be compensated for by the remaining functional sur-
faces, but the rudder so dominates the vectors for side force and yawing moment that a failure of this

surface will almost certainly indicate either unsymmetric flight or departure of the aircraft.
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Introduction

In chapter I, three questions were posed regarding the stability characteristics of an aircraft
with failed control surfaces. Specifically: given a failure, can a trim solution be achieved? If trim is
achievable, how large is the region in a / 8 space and what are the stability characteristics of the aircraft
within this space? And, finally, can the space be augmented or improved by allowing for greater inde-
pendence of the control surfaces? In this chapter the equations of motion derived in Appendix D are
us-d in conjunction with the acrodynamic predictor equations developed in Chapter II to provide tech-
niques for addressing these questions. The three control schemes and the flight conditions studied in
this thesis are defined. A discussion of the use of the trim equations and the order of their solution is
provided along with an overview of the FORTRAN codes developed to solve the trim problem. The
matrix decomposition techniques of Singular Value Decomposition (SVD) and the Row Reduced
Echelon Form are advanced as a mean of gaining further insight into the nature of the stability charac-

teristics of the aircraft.

Problem Scope

The trim condition which is desired is that equilibrium state which results in the aircraft flying
in constant altitude, rectilinear flight. While other flight conditions, which might be less difficult to
achieve in the event of a failure of a coatrol surface; only constant altitude flight is examined in this
thesis. A failure of the rudder, which results in the rudder being locked at some deflection is the

failure mode which will be studied in depth. This failure is selected since it appears to be one of the
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more challenging conditions to be addressed. The discussions which follow will be primarily con-
cerned with rudder failure, but the techniques developed and some of the results are pertinent to
failures of other surfaces as well.

The investigation will also be limited by the range of the test data which was collected by Tur-
hal [12]. Therefore, the dimensions of the a/8 space which will be examined are limited to; -6.0 < 8 <
60and0 s a s 20. A final set of assumptions which are pertinent to the formulation of this inves-
tigation are the assumptions associated with the derivation of the equations of motion; they are as fol-
lows

1. The aircraft is assumed to be a rigid airframe.

2. The earth is assumed to be an inertial frame of

reference.

3. The Aircraft mass and mass distribution are assumed

to be constant.

4. The X-Z plane of the aircraft is assumed to be a

plane of inertial symmetry.

The implications of these assumptions are discussed in detail in Appendix D, where the equa-

tions of motion are derived.

Control Schemes

As was noted in Chapter II, the current implementation of the control surfaces on the F-16 al-
lows the pilot to command both differential (HA) and symmetric (HE) deflections of the horizoatal
tails and strictly asymmetric deflection of the flaperons (FA). While the flaperons may be deployed
symmetrically, as flaps, this is not part of the normal control of the aircraft. In the same manner, the

leading edge flaps (LEF) are deployed via scheduling and are not under the direct control of the pilot.
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The control schemes used in this thesis were derived by allowing the control surfaces currently on the
aircraft to deploy with successively greater independence. It should be noted that the control schemes
discussed in this thesis do not refer to control laws.

In Case A the control schemes investigated are essentially the current control scheme,
described above, with the improvement that the LEFs are now controlled directly. Consistent with their

current deployment, they are limited to symmetric deflection. The rudder is not listed in Table 2 since

Table 2 Control Schemes

Case A CaseB Case C

d LEF d LFL SLFL

S FA d RFL d RFL

d HA S LHT OLHT

JHE d RHT ORHT
OLLE
ORLE

in all the studies performed in this research the rudder is the failed surface and is therefore not avail-

able for control. The deflection of the individual control surfaces in Case A are related as follows:

1 )
S1et = 2 Yrig * SLLE’
1 -
bea = = Yppr - SLrL (42)
1 -
Sga = 2 “Sgar " CLmT’ (43)
. =L (6 + 6.
HE 2 "“RBT LEBT 4.9)
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For Case B, the LEFs return to being scheduled surfaces but now the flaperons are permitted,
like the horizontal tails, to deflect independently of one another. This should provide the aircraft with
greater control over the lift experienced at a given AOA and some additional pitch control. Case C
represents the situation where all the available surfaces are allowed to deploy independently. While
the feasibility of implementing such a control scheme might be argued the object here is to study what
advantages might be gained if such a scheme were achievable. It might also be noted that each scheme
is related to the others. In fact, Case A and Case B are special cases of Case C. The original control

scheme then is simply a more constrained version of Case A.

In Appendix D the equilibrium equations for rectilinear flight were derived along with an ex-

pression for the aircraft pitch angle that specified constant altitude flight. Repeating these for clarity

AY + mg Cos & Sin ¢ = 0 (4.6)
+ cosg cosp = 0

Fa, T8 47)
¢ 0

x (49)

F

A, (4.9)

¥, =0 (4.10)
A,

-1 ' Tan 3
& = Tan Tan a Cos ¢ + Cos o sin ¢ } (4.11)

The aerodynamic force and moment coefficients, as functions of a, 8, and the control surface

deflections, were defined in Chapter II to be expressions of the form
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These nondimensional coefficients may be converted into forces and moments by means of the
relationships defined in Chapter II. Since the wind tunnel data was recorded in the Stability Axis sys-
tem, a transformation will have to be performed to express the forces in the Body Axis system, which
are the forces specified in equations (4.5) - (4.7). The Body and Stability Axis Systems are defined in
Appendix D and are shown in Figure 22

Studying equations (4.5) - (4.12) reveals that the equations are nonlinear due to the powers on
a and B and the trigonometric functions in equations (4.5) - (4.7). Not only are the equations non-
linear, but they are also coupled in several ways. Equation (4.6) (side force) and equation (4.7) (nor-
mal force) both include terms which have 6 and ¢ in them. This effectively couples the lateral and

longitudinal equations of the aircrafts motion. Second, the aircraft control derivatives and stability
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Figure 22 F-16 Body and Stability Axis Systems
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derivatives have coupled terms of a and 8 in them. Third, equation (4.11) introduces a strong coupling
of the lateral and longitudinal equations. Obviously, as currently expressed the problem is not con-
ducive to linear solution techniques and must be manipulated to produce a solvable problem.

If the equations were fully expanded by substituting in the aircraft forces and moments defined
in Chapter II, the following unknowns would be identified: dynamic pressure, gross weight, 7 control
surface deflections, AOA, sideslip angle, thrust, pitch angle, and roll angle. As stated, that amounts to
fourteen unknowns and six equations. Several unknowns can be removed by stating the aircraft con-
figuration and the flight conditions at which the analysis is to be performed. Two flight conditions are
defined in Table 3 for use in the analysis. Condition I is representative of the aircraft at an approach
speed and Condition II permits the analysis of a cruise condition. Note that the thrust term only ap-
pears in the axial force equation. For this reason, the assumption is made that at any condition where
equilibrium can be achieved, within other limits, the aircraft engine can develop sufficient thrust to
satisfy equation (4.5). Equation (4.5) is not included in the analysis from this point forward. Since one
surface is assumed to be failed this will remove another unknown as will the constraint of constant al-
titude flight which defines 6 in terms of @, B, and ¢ (4.11). At this point the problem has been reduced
to five equations in nine unknowns. The nonlinearities and coupling noted earlier still remain to be ad-

dressed. Since one of the stated objectives of this investigation is to define the region in /8 space in

Table 3 Flight Conditions
[ 1]
Gross Weight 19000 Ibf 1900ibt
Mach 0.22 0.6
Altitude Sea level 15000 ft
Velocity 150 KEAS 297 KEAS
q 75 pst 300 pst
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which trim is achievable it is reasonable to specify a value for a and 8. The problem then reduces to
seven unknowns. Table 2 indicates, however, that Cases A and B involve only four independent con-
trols. The number of unknowns is now five and equal to the number of equations. Further, by specify-
ing a and 8 we have reduced all of the aerodynamic forces and moments to linear functions. For Cases

A and B, and with the specification of a and B, the forces and moments may be written in the form

4 1
F,=A,+B+ T [
=1 m==0 n

18 v o
O

O‘nﬁmét (4.13)

Here Ao represents the force or moment of the "zero" case, B the contributions of the failed control
surface and in Case B the LEFs, and the last term the force or moment that will result from the un-

known deflections of the control surfaces.

Solving the Trim Problem

Figure 23 is a schematic flow chart of the FORTRAN codes developed to solve the defined
trim problem and provides a useful aid for following the solution technique employed. The previous
discussion follows the flow chart down to the point where the forces and moments due to the failed con-
trol surface, the rudder, have been calculated. Given that for zero flight path angle 8 is equal to « an in-
itial estimate for @ is given as a. Further, since the remaining control surfaces do not exert a strong
influence on the aircraft side force it is initially assumed that the unknown control surfaces do not ap-
pear in equation (4.6). With these assumptions equation (4.6) may be solved for an initial estimate of

¢. At this point all of the angles in the problem have cither been specified or estimated and hence the
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only remaining unknowns in the problem are the control surface deflections. Based on the restrictions
placed on the control derivatives in Chapter II the problem is now a linear problem of four equations

and four unknowns which may be formed as follows

4
- (A_ + + =
z Bz mg Coso Cosg) 151 czi 61 (4.14)
4
- (Am + Bm) = T Cmi cSi (4.15)
i=1
4
- = 4,
(4, + By L C,y &y (4.16)
i=1
4 4.17)
- (A + B = 151 C.q by

Since everything on the left hand side of each equation is known the problem may be rewritten in the

familiar form:

b =[A} & (4.18)

The b vector contains all the known forces and moments and has as its rows; normal force,
pitching moment, rolling moment, and yawing moment. The d vector is the unknown control deflec-
tions and the 4 x 4 A matrix contains the control derivatives of the respective controls. Solving equa-
tion (4.18) will define the control deflections needed to achieve trim.

Earlier in the problem solution an assumption was made that the side force did not contain
terms from the unknown control surfaces. Further, the pitch angle was estimated as a though in Ap-

pendix D it is demonstrated that this is not true in general. These assumptions are now accounted for
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by recalculating the sideforce including the force due to the deflections found via equation (4.18) and
calculating a new pitch angle with equation (4.11). A new roll angle is then calculated with these up-
dates and the problem is iterated until the errors between the estimates for 8 and ¢ bccomc small.
While the deflections determined by solving equation (4.18) will result in the satisfaction of the
equilibrium equations these deflections may not represent a solution to the aircraft trim problem. To
be a bonafide solution the deflections determined by equation (4.18) may not exceed the deflection
limits defined in Table 4. If the calculated deflections are within these constraints then that point has

been determined to be a point in a/f space at which trim can be effected.

Computer Codes

A FORTRAN computer code was written for each of the three control schemes defined. The
order of solution and logic are essentially the same for each code with one important distinction. The
discussion provided above only covered the cases where there are four independent control deflections
to be solved for. Case C incorporates six control surfaces and therefore may not be solved directly by
the technique described above. Case C was solved by placing an additional two loops outside of the

a/f8 loops of the problem flow charted in Figure 23 ; one loop for each of the leading edge flaps. The

Table 4 Control Surface Deflection Limits

LEF 2° sds 25°

FLAPERONS 20° sds 20°

HRZT Talls 25° s s 25°

Rudder 30° €8s 30
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LEFs were then allowed to vary through their ranges in one degree increments. As will be seen later in
this chapter, the introduction of the two additional degrees of freedom to the problem means that there
may be multiple solutions at a given point. The coding logic is such that only one solution is recorded

for a given point in a/B space. The three computer codes are included in Appendix F.

Matri m iti hni

Two techniques for decomposing the linear problem which has been defined were investigated
as means for gaining additional insight into the nature of the problem. These techniques are particular-
ly helpful for Case C where a unique solution to the problem does not exist. The problem is stated in

the following form

b =([A]l & (4.19)

Here bis a 4 x 1 vector, A is 4 x 6 matrix of control derivatives, and 8 is a6 x 1 vector of un-
known control deflections. By augmenting the A matrix with the b vector and placing the augmented
matrix in Row Reduced Echelon Form (RREF)(5:40-41), the problem can be decomposed into the

form

1 0 0 0 A B ! b1
0 1 0 o0 ¢ D ! b
' . 4.20
0 0 1 0 E F ! b (420)
: 3
©o 0 0 1 6 H ; b
iy ¢ d
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Which may be rewritten as:

b1=<51+Ac55+B<56
b =<52+C<55+D66
. (4.21)
b3=63+&55+F<S6
b4 = 64 + Gés + Hc56
In turn equation (4.21) is manipulated to place the problem in the desired form.
A B
) = <) - b ci - 8 b (422)
E F
G H

Stated in this way several things may be observed. First, when (3 5) and (4 6) are zero the b’
vector represents the solution to the four independent control problem. Secondly, equation (4.22)
defines the range of available solutions that may be obtained at the specificd point ina / 8 space. Any
solution in the span defined by equation (4.22) is a viable solution provided that the control deflections
are within the defined limits. Also note that the failure of any control surface may be represented simp-
ly by changing the control surfaces whose control derivatives are contained in the A matrix. Or, viewed
from another angle, it can be seen that equation (4.22) defines the degree to which any two additional
surfaces may be failed and equilibrium still be achieved.

Given a matrix A it may be decomposed via Singular Value Decomposition into the following

form, [9:451].
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T
1

A= [Ul U2] T (4.23)
2

Here the columns of U are defined to be the left singular vectors, the columns of V are the
right singular vectors and (Z) is a-diagonal matrix with the nonzero singular values of A on the
diagonal. If A is an m x n matrix and their are r nonzero singular values then the following dimensions
will be established. U will contain r columns and Uz will contain m-r columns. Vi will have r columns
and V2 n-r columns, [9,452]. The range space is defined by the span of the columns of U 1 and the
null space by the span of the columns of V2. SVD provides two insights into the problem that are imme-
diately apparent. If the matrix A is found to have any singular values that are zero then A is rank defi-
cient by the number of zero singular values and a unique solution to the linear problem, as formulated,
does not exist. The columns of V3 span the null space of the problem with the attending implication
that any combination of control deflections that are in that span will map to zero. Stated another way, if
the controls are combined in such a manner that the vector of conurol deflections (8) is equal to one of
the vectors in V3 times a constant, then that combination of controls will have no effect on the forces

and momeants represented in the b vector of equation (4.19).

Summary

In this chapter the nonlinear equilibrium equations derived in Appendix D are used to
develop a methodology for determining if and where trim may be achieved for a given control surface

failure. The solution technique and order are discussed using a schematic flow chart, which describes
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the FORTRAN codes which were written to perform the trim investigations. The matrix decomposi-
tion techniques of Singular Value Decomposition and the Row Reduced Echelon Form are presented

as methods for gaining a deeper understanding and appreciation of the defined problem.




Introduction

In this chapter the results of the equilibrium analysis performed via the methodology of Chap-
ter IV are presented. The relative merits of each of the three control schemes will be discussed with
respect to not only their ability to augment the region in which trim is achievable but also their ability to
affect the aircraft characteristics within the defined regions. Specific attention will be given to address-
ing why a particular control scheme gives the results that it does and what the ensuing implications are.
A short discussion will be provided concerning preferred locations within the equilibrium space and
what the attending pros and cons of being located at that point are. Contour plots of the aircraft roll
angle, drag coefficient, and residual pitch and roll authority are used to support this analysis. The Row
Reduced Echelon Form and Singular Value Decomposition are used to provide additional insight into

the problem.

Trim Avallability

In the event of a failure of a control surface one of the first questions to be addressed is
whether the aircraft can be maintained in a state of equilibrium. An investigation of rudder failure was
performed to address this question with the analysis subject to the constraints listed in Table 5. Only

failures of the rudder resulting in a negative deflection, rudder deflected towards the starboard side of

Table 5 Problem Constraints

0° s a s 20°
6 s s 6
OMIN S &I S IMAX




the aircraft, were investigated since the aircraft was otherwise assumed to be symmetrical. Table 6

presents the results of this initial analysis indicating that while a complete or "hardover” failure can be

Table 6 Maximum Trimable Rudder Failure

Flight Condition | ]

Case A -20° -30°
CaseB -20° -30°
Case C -21° -30°

tolerated at the second flight condition it is not possible to trim the aircraft at the lower dynamic pres-
sure of Flight Condition I. Note that the increasingly complex control schemes do not significantly
alter the degree of deflection that may be tolerated at Flight Condition I. While not essential, it seems

desirable to be able to place the aircraft in a condition of symmetry or zero 8. Table 7 indicates the de-

Table 7 Maximum Rudder Failure for 8 = 0

Flight Condition I "
Case A -1° -9°
CaseB -1° -g°
Case C -5° -10°

gree of rudder dcflecticn that can be sustained and the aircraft still returned to a zero sideslip condi-
tion. While Case C does provide a measure of improvement over the other control schemes it is hardly
a substantial one. The results presented in these two tables indicate that with the control surfaces cur-
rently on the aircraft, even when employed with complete independence, equilibrium can not be
achieved at all flight conditions if the rudder fails at its maximum deflection. This statement is made

with the caveat of the constraints within which the analysis was performed. Even a partial failure of the




rudder may necessitate flight in an unsymmetric orientation. While a symmetric orientation might be
preferable, the fact that an equilibrium condition exists for a "hardover” failure should be noted as sig-
nificant. The aircraft may not be able to be correctly oriented for a landing, but at least the occurrence
of a rudder failure need not result in an uncontrollable departure of the aircraft.

The information presented in Tables 6 and 7 indicate that the increasingly complex control
schemes do not significantly change the aircrafts ability to sustain rudder damage. There are, however,
advantages to be gained from permitting greater independence among the control surfaces. The
shaded regions of Figure 24 show the positions in a/8 space where the aircraft can be trimmed when
the rudder is locked in a neutral position. Anywhere within this envelope, the correct application of
controls will zero all of the accelerations and place the aircraft in an equilibrium state of constant al-
titude, rectilinear flight. It is immediately apparent that Case B provides the most significant improve-
ment from one control scheme to the next at this flight condition. Also, the results discussed in the
proceeding paragraph may be substantiated by observing that the Figures 25 and 26 which represent
the equilibrium regions for rudder failures of ten and twenty five degrees respectively. At this flight
condition, Flight Condition II, a significant improvement in the aircrafts ability to return to a zero S
condition is not achieved by ailowing more freedom among the control surfaces.

Note that as was discussed in Chapter IV each case is contained within the next, more com-
plex, control scheme. Hence, the trim region of the control set-up of the current F-16 would be a line
located with in the Case A trim region. Allowing the LEF:s to be controlled, but in a strictly symmetric
fashion, expands this line into the band which is shown in Figure 24. The substantial improvement from
Case A to Case B results from allowing the flaperons to act as flaps in Case B. With this new sym-
metric deflection capability the aircraft now has the ability to significantly change its lift at a given point
in the a/B space. One further note of interest is that the characteristic shape discussed in Chapter II
for the longitudinal acrodynamic coefficients '« cvident in Figure 24. If desired, the aircraft can be

trimmed at a lower AOA by assuming an unsymmetric orientation.
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The equilibrium regions in which trim could be achieved for Flight Condition I provided per-
haps the most dramatic evidence of the differences between the three control schemes. It can be ob-
served from Figure 27 that the improvement gained from Case A to Case B is the ability to trim over a
greater range of angle of attacks. Very little if any improvement is gained in the ability to move the
aircraft laterally. This observation is substantiated by noting that the means by which the control sur-
faces generate lateral forces and moments is through asymmetric deflections. No additional
capabilities for asymmetric control deflection exist between Case A and Case B. This is not the situa-
tion, however, for Case C. Case C augments Case B by allowing the LEFs to be deployed with com-
plete independence. The advantage gained also is evidenced in Figure 27. Here the equilibrium region
is visibly improved both in « and in 8. The question naturally arises as to why Case C shows such a
marked enlargement of the equilibrium region at Flight Condition I when its improvement is marginal
at the higher dynamic pressure of Flight Condition II. The answer may be tound by investigating the
normalized derivative contour plots developed in Chapter III. Studying the contour plots, Appendix E,
of the lateral derivatives for the LEFs will reveal that while they are almost insignificant relative to the
other surfaces at the lower AOAs, they become quite prominent as angle of attack is increased. There-
fore, at Flight Condition I where a fairly large « is required, a regime is entered where the LEFs have a
significant role to play.

Tables 8, 9, and 10 provide a quantitative representation of the same information which is con-
tained in the equilibrium regjon figures already observed. The computer codes, which performed the
trim surveys, indexed through the a/8 space searching for points at which trim could be achieved. Each
trim point was located inside a square of area 0.01 deg 2| The areas listed in Tables 8, 9 and 10 were
obtained by summing all the "points” where a trim solution was found.

It is true that in most instances a single point at which trim can be achieved is considered to be
sufficient. For the investigation performed here, two reasons 2re advanced for why it is desirable to
achieve a large trim region. First, in the event that a control surface fails at some large deflection, the

accompanying forces and moments generated may be so large that the aircraft will move rapidly
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towards departure. A large equilibrium region indicates that with the correct application of controis,
equilibrium may be regained with a greater degree of certainty and ease then if equilibrium can only be
achieved at some obscure location in a/f space. Second, given that equilibrium can be obtained, issues
of residual control authority and aircraft orientation, become first order coansiderations. It is postu-
lated that the larger trim region will allow for greater latitude in selecting a trim location that is

preferable in light of the considerations listed above.

Table 8 Areas of Equilibrium Regjons Rudder = 0

Flight Condition | il
Case A 0.35 5.95
Case B 1.03 37.75
Case C 20.61 38.18

Table 9 Areas of the Equilibrium Regions Rudder = -10

Flight Condition | u
Case A .24 5.14
Case B 2.32 27.3
Case C 18.75 28.93

Table 10 Areas of the Equilibrium Regions Rudder = -25

Flight Condition | n
Case A 0 .81
CaseB 0 3.42
CaseC 0 6.85
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To investigate the aircrafts orientation and characteristics within the regions of equilibrium,
contour plots of the following were constructed: aircraft roll angle, total drag coefficient, residual pitch
authority, and residual roll authority. The residual authorities are percentages representing of the max-
imum authority remains that could be developed by the functional surfaces at that point in o/8 space.
Note that the dashed lines define the boundary of the trim region defined earlier. Taken together the
plots in Figures 28 -29 provide a fairly complete picture of the aircraft characteristics with the rudder
locked in a neutral position. As 8 is increased there is a steady increase in the aircraft roll angle. This
result is consistent with the observation made in Chapter III that the rudder is the only control surface
which effectively counters aircraft side force. Hence if the rudder is unavailable, and equilibrium must
be maintained, some roll angle must be sustained. Since these plots were developed for Flight Condi-
tion II, the aircraft is not limited by its pitching authority. Further, Figure 29 provides a clear indica-
tion of the lateral freedom which is available and what the attending costs are in reduced residual
coatrol authority, aircraft drag, and roll angle.

This point is sharpened by observing a similar set of plots (Figures 30-31 ) which were
generated for the Case B control scheme at Flight Condition IT but now with the rudder locked at a
deflection of -10 degrees. Here it is evident that the preferred location within the equilibrium region is
driven by what is most important to the pilot. If maintaining maximum coatrol authority is a first order
consideration, Figures 30 and 31 show the pilot that he must be willing to accept flight in an unsym-
metric orientation of about three degrees of 8 and eight degrees of rou angle. Conversely, if he desires
to fly as close to a symmetric condition as possible, he can approach it at this flight condition, but at
the substantial price of retaining only twenty percent of his pitck authority and forty percent of his roll
authority. Minimizing the drag coefficient, as seen in Figure 30, would require trimming at a slightly
lower AOA. Also note, that even as the aircraft approaches the zero 8 condition, the roll angle is not

zero here.
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Eurther Insight into the Trim Problem

Two matrix decomposition techniques were used to provide additional insight into the charac-
teristics of the aircraft within a trim region. Through the use of the Singular Value Decomposition of
the matrix containing the control derivatives of the various controls used in achieving trim it was pos-
sible to define the vectors of control deflection which span the null space. By manipulating the Row
Reduced Echelon Form of the problem in the manner discussed in Chapter IV it was possible to define
what the allowable control deflections at a particular point in &/8 space are. Further insight into the in-
terrelationship of the control surfaces in achieving trim was also obtained via this decomposition. Al-
though not used in this manner here, this technique also defines the range of failures that can be
sustained by any two additional surfaces.

Four points from the equilibrium region of Case C at Flight Condition I, Figure , were selected
for study and these points are listed in Table 11. Essentially, they represent the extremes in @ and 8 at
which trim could be effected. Performing the row reduction of the augmented matrix for points 1 and 2

Table 11 Investigation Points

q a B
Point 1 75 12 0.0
Point 2 75 18 0.8
Point 3 75 17 -1.8
Point 4 75 17 1.8
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and manipulating as was discussed in Chapter IV yields equations (5.1) and (5.2).

LFL 1527 (- 0.12 | (013

RFL| = 16.76 ] 0.02 0.26

LHT 2166| + LLEF | 0.34| +  -RLEF 0.37 (5.1)
RHT -23.20 Lo.z‘t ] | 0.50 |

[LFL 19.08 [0.13 ] (0.19]

RFL | = -12.21 0.05 0.34

LHT 1873 | + LLEF [-0.41] + ALEF 0.50 (5.2)
RHT -25.64 0.30 062

Here, the first column of numbers represents the control deflections that the control surfaces listed on
thic loft wouldd liave to wake ou to achieve trim for the LEFs set at zero. The range of allowable solu-
tions then contains any combination of deflections of the LEFs that does not lead to a violation of the
deflection constraints of the other control surfaces. Points 1 and 2 represent the minimum and maxi-
mum AQA at which trim may be achieved for Case C. If the LEFs are set at their scheduled values for
the respective AOAs these two equations would represent the Case B solution at these two points.
Note that without an asymmetric deflection capability, equation (5.2) would not represent a solution
due to the violation of the deflection limit on the RHT. Another point of interest is that the total
elevator de. tion changes very little between the low AQA to the higher AOA at point two; -22.43
and -22.18 degrees, respectively. What does change dramatically is the employment of the flaperons,
which experience a complete change of sign indicating that at some intermediate AOA the flap deflec-

tion is approximately zero. A final note is that the sign combinations on the LEF terms remain consis-
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tent between equation (5.1) and (5.2) illustrating that there is not some fundamental change in the in-
teraction of the control surfaces from point one to two. The null spaces are spanned by the two vectors
obtained in the singular value decomposition. Any combination of the control surfaces within the span

of these vectors, at each point, will result in a zero input to the force and moments contained in the b

Table 12 Null Vectors at Points 1 and 2

Point 1 Point 2
[0.1397 [0.000 | [0.163 ] [0000 ]
-0.142 [0.167 0.211| [0.145
-0.401| [0.018 -0.404| |-0.056f
0.397 | |-0.175 0.442 | |-0.104
0.631] [0.692 | 0.444 | 0,810

vector of the linear problem: Normal force, Pitching moment, Rolling moment, and Yawing moment.
Points 3 and 4, see Table 11, represent the aircraft at the AOA at which the largest latitude in

B exists for this flight condition. The appropriate augmented matrices and manipulations lead to equa-

tions (5.3) and (5.4).

IT.FL -20.73 0.11 017

RFI 5.17 0.03 0.31

LHT | = 1288 | + LLEF |-0.36] + ALEF |0.45 (5.3)
RHT 31.26 0.24 0.56

LFL 9.06 0.16 0.13]

RFL -22.34 0.05 0.28

LHT | = 3095| + LLEF |-038| + RLEF |[-0.39 (5.4)
RHT -13.16 0.30 20.54)

At these points it can be observed that both the flaperons and the horizontal tails are taking on large

asymmetric deflections to generate the lateral forces and moments required to hold the aircraft in equi-




librium. Note the reversals in the magnitudes of the control deflections which occur as the aircraft
traverses from negative B, point 3, to positive 8 at point 4. Again it is evident that with out the aid of
the LEFs deployed in an asymmetric fashion, the constraints on the deflections of the control surfaces
cannot be met. The sign combinations observed in equations (5.1) and (5.2) for the LEFs are main-
tained in equations (5.3) and (5.4) indicating that a fundamental change in the relationship of the con-
trol surfaces has not occurred in the B range traversed. The null vectors associated with points 3 and 4
are listed below.

Table 13 Null Vectors at Points 3 and 4

Point 3 Point 4

[0.148] [0.000] [0.158] [0.000]
- b.200 | |0.143 -0.141{ [0.171
-0.432 10.065 -0.415 (0.045
0.445 | +0.094 0.415| {0.210
0.433 | 0.831 0.671| |0.628
10605 |0.525] -0.401 |0.728

Summary

In this chapter the results of the investigations into the availability of a trim solution for an
aircraft which has sustained a failure of the rudder were discussed. It was demonstrated that even
when the aircraft sustained a "hardover” failure of the rudder, trim was achievable at realistic flight con-
ditions. Further, all three of the proposed control schemes were capable of achieving this condition.

It was also shown, however, that a return to wings level, zero sideslip flight may not be possible. Even

the allowance for complete independence of the remaining control surfaces did not significantly alter
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this finding. Though the necessity for flight in an unsymmetric orientation might not be desirable, it

should not obscure the finding that the aircraft can still maintain constant altitude, rectilinear flight,
' even when it has sustained the most severe failure of the rudder.

Through the use of plots illustrating the regions in /8 space at which trim could be achieved

for the three different control schemes, the advantages offered by each scheme were demonstrated.

The most dramatic expansion of the trim region was observed at Flight Condition I when the six con-
trol surfaces were allowed to operate with complete independence. This augmentation results from
employing the LEFs in an independent manner in a region of /8 space where they have gained effec-
tiveness relative to the other surfaces.

The existence of preferred locations within the regions was demonstrated by the use of con-
tour plots of the aircraft roll angle, drag coefficient, and residual pitch and roll authorities. For partial
failures of the rudder it may be possible to orient the aircraft close to symmetric flight but it was shown
that there are resulting penalties to be paid in the form of reduction of residual control authorities. By
decomposing the problem with row reduction of the augmented matrix of the linear problem formu-
lated in Chapter IV it was possible to gain a better "feel” for how the controls deflected at different

points in @/ space.




l M DATI

In the introduction chapter of this thesis it was stated that this research would encompass a
thorough investigation of the stability characteristics of an aircraft which had sustained damage to a
primary control surface. This analysis was carried out by formulating functional representations of
wind tunnel data for an F-16. The polynomials developed from this data were examined to identify cou-
pling which might be significant. This data was then used to perform a nonlinear analysis which
defined the regions in a/f space in which equilibrium could be maintained when the aircraft sustained
a failure of the rudder. The following paragraphs provide a summary of the observations and con-

clusions of this research.

Coupling Eftects

The contour plots that were constructed to observe the variation of the acrodynamic coeffi-
cients indicated that there was a significant variation in the longitudinal coefficients as a function of .
This variation was symmetric about  equals zero. Not only was this variation observed in these plots,
but the trim evaluations performed later also were effected. A slightly unsymmetrical orientation
resulted in trim being achieved at a lower angle of attack. A coupling of @ and B was also noticed in the
lateral coefficients at the higher angles of attack. Plots of the normalized control derivatives provided
several key insights. The most significant of these was the indication that the rudder is the only control
surface which is effective in generating side force on the aircraft. The flaperons and horizontal tails
proved to be of the same order of magnitude for most of the forces, leading to the conclusion that a
failure of one of these surfaces can be effectively addressed with the remaining surfaces. The leading
edge flaps, which at low angjes of attack were not particularly significant reiative to the other surfaces,

became effective with respect to the other controls as the aircraft AOA was increased




A final coupling effect, which was not actually aerodynamic in nature but was of importance,
involved one of the angular relationships used to describe the aircraft orientation. In Appendix D it
was demonstrated that the expression usually employed to relate aircraft pitch angle to flight path
angle is not satisfactory for analysis that will occur in asymmetric oricntations. The appropriate

relationship was derived in Appendix D and used in the analysis performed in this thesis.

The equilibrium analysis perforiaed in *his thesis indicated that, with the control surfaces cur-
rently on the F-16, it is possible to place the aircraft in state of constant altitude, rectilinear flight when
the aircraft has sustained a failure of the rudder. In fact, all three of the control schemes investigated
in this thesis, trimmed the aircraft even when a maximum deflection of the rudder was the indicated
failure. While trim could not be achieved at all flight conditions with this failure, and the resuiting orien-
tation was unsymmetrical, the fact remains that a hardover failure of the rudder need not imply a depar-
ture of the aircraft. It was also demonstrated, that although the rudder is the dominant control surface;
employing the remaining control surfaces with complete independence gave the aircraft a limited
ability to affect its lateral characteristics. This finding is particularly significant for failures of the rud-
der which leave it free floating or remove it entirely. For these failures, the rudder does not generate
unwanted forces and moments which must be overcome by the remaining surfaces.

The characteristics of the aircraft, within the regions of a/f space where trim _ould be
achieved, were examined to gain a better understanding of the implications of a failed rudder. It was
observed, that there were both benefits and penalties associated with being located at a particular posi-
tion in the trim region. For instance, the equilibrium location at which the aircraft retained the maxi-
mum amount of residual control authority might result in the aircraft oriented with significant sideslip
and roll angles. Conversely, if the pilot desires an orientation of the aircraft which is nearly symmetric,

there is a corresponding reduction in residual control authority.




The advantages to be gained by employing the control surfaces with greater independence,
were most evident at the high AOA associated with the lower dynamic pressure of Flight Condition I.
At this higher AOA, allowing the leading edge flaps to deflect independently provided a significant aug-
mentation of the trim region. Most notably, the region was expanded in 8; demonstrating an improved
capability to affect the lateral orientation of the aircraft. These observations, as well as those discussed
above, indicate that employing the control surfaces currently on the F-16 with greater independence,
provides an effective means of compensating for a failure of the rudder. A fully satisfactory solution,
however, will require an additional control surface which is effective in generating side force and
yawing moment. Thrust vectoring might also be a means of imparting the forces and moments needed

to offset the negative effects of the failed rudder.

Recommendations

It would seem that most investigations generate more questions then they ever answer. Rela-
tive to the work performed in this thesis four recommendations for foliow on work are proposed. First,
the failure of control surfaces other then the rudder should be investigated using the methods used in
this thesis. While information about other failures can be deduced from the investigations performed
here, a more thorough study would provide clearer insight. Further, it is possible that the advantages
to be gained from allowing greater independence among the control surfaces are more significant then
observed in this study. Investigating another failure mode might highlight a clear advantage of one con-
trol scheme over another.

Second, there are two entire sets of data taken by Turhal [12] that were not subjected to com-
plete analysis in this research. The wind tunnel data for the floating left flaperon and missing left

flaperon cases should be curve fit and subjected to the same analysis performed here. The curve fitting




routines and the methodology developed for performing the analysis are either currently set up to per-
form this investigation or could easily be modified to do so. This analysis would provide important in-
formation regarding the implications of a dual failure mode.

Third, a dynamic analysis should be performed of the aircraft, where the model has been for-
mulated to account for the aircraft trimmed in the unsymmetrical orientation. How will the aircraft
respond if it is trimmed in an unsymmetrical orientation? How has the aircraft response been limited if
the aircraft has been located at the preferred orientation of wings level with the attending penalties in
residual control authorities? These are important questions; which are very pertinent to fully describ-
ing the dynamic characteristics of the aircraft which has sustained a rudder failure.

Fourth, a similar study should be performed using an aircraft that has some means, other than

the rudder, for effectively generating side force and yawing moment.




APPENDIX A

For the experimentz! data recorded in Turhal’s research, [12] each of the six force or moment
coefficients was a frnction of three variables; Angle of Attack, Sideslip angle, and the deflection of a

single control surface.

Three model configurations were investigated; all control surfaces fixed at zero and one sur-
face varying, the left flaperon floating free and one other surface varying, and the left flaperon missing
with one surface varying. A detailed discussion of the experimental procedure may be found in [12].

Obviously it is not practical to investigate every point in the @/8/8 space. Therefore, experi-
ment data for a representative sampling of discrete data points was recorded. For the investigation per-
formed in this theses, however, some form of functionl representation of the data was required. A
least squarcs curve fitting technique was chosen as a method for creating a function which ap-
proximates the behavior of the experimental data. The following is a general discussion of the techni-
que used to curvefit the force and moment coefficients and follows the development of [12].

Given a dependent variable Cs and a vector of independent variable X the behavior of C¢ can

be approximated by a predictor equation of the following form

(A2)
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Where &; (i) is an arbitrary function. At a particular value of X, the error between the ob-

served value of Cf and the predicted value will be

I
E =2C - a, Qi (xj) (A.3)

In determining the sum of the errors it is important to recognize that not only are negative er-
rors as significant as positive ones but also that the subsequent cancelling that occurs in summing the
errors is undesirable. For these reasons, the error at each value of Xis squared prior ta the summation
operation.

The total square error is then written as
J J I
EZ - 2 _ = (A.4)
=¥7¥ E; =% C -T a, & (x))
T = 3 3=1 f 4 4= i1 J

To find the coefficients which will result in a curve fit with the minimum sum of the square er-
rors the expression for t* is differentiated partially with respect to each coefficient Ai. The correspond-

ing equations are then set equal to zero.

SE> SE
T _
—— = 2 ET -
Sa ba (A.S)
SEZ J g I
S C, -L a, s, -~ [-2¢,(x,21 = 9
sa, 51| £y 4S9 171 = 073 (A6)
2
SEx I T I - - (A7)
——== =71 Cf - I ai §1 (xj) {-2 <§1 (xj)l = 0
cSal i=1 { "1 1=0
. : (A8)
éE?. J I - -
————— = E C - E a $ (x.,) [—2 ‘;I (x )]= 0
sa, 3=1 | Ty a=0 t * !

TheI + 1equations can then be places into a Matrix equation
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3

(Al {a} = (b}

where [A] is a symmetric matrix of the following form

J -
§1§o(xj)§l(xj)

Since [A] is square and nonsingular, the coefficients of Ai may be found using

(a) = (A} Y
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For the curve fitting accomplished in this thesis the function ® was chosen to be a polynomial
in three variables. Therefore, Cr took on the following form
L )| N

{ m _n
Ce = L E L a a” 36 (A.12)
£ =0 w0 n=0 {mm

Where the values of ‘A’ determined from solving the linear problem become the coefficients
which multiply the respective polynomial terms. For the work done in this thesis, it was helpful to
separate those polynomial terms not associated with a control surface deflection from those which

were. The zero defection terms were written as

L X ‘™
C = C.(ax,f3) = L E a a 3 (A.13)
s £ =0 w0

In effect, this set of terms represents the variation of the force or moment coefficients with all
the control surfaces set equal to zero. The total value of the force or moment coefficient including the

effects of each control surface is then written as

7
Cp @,3,6) = C, + L Cp (a,(3,6)
T 0 x=1 x (A.14)
L N ! m 7 L M N ‘m .o
Cc. = E L a_o'p®+ L £ £ I B alsl (AN
f 0.
t =0 m=0 ‘@ k=1 40 m=0 n=1 ‘™ /7 'k
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The FORTRAN computer codes used to accomplish the assembly and curve fitting of the

wind tunnel data may be found in Appendix B. There codes are currently configured for and will com-

pile on a UNIX operating system.
It should be noted that the final summation is over the seven independent control surfaces. It
was assumed for the curve fitting that the contribution of each controi surface may be summed together

via the superposition principle, and that each control surface was of the form

B (A.16)
_jC a+C_p3+C,
Cféi - { %s s ° ) Sy
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APPENDIX B

Contained in this appendix are the two FORTRAN codes which were used to perform the cur-
vefits of Turhal’s wind tunnel data. Polyfitb.for is actually just a variation of Polyfita.for which was used
to develop the predictor equations for the control derivatives. Its primary difference from Polyfita.for is
that it calls in the polynomial fits that were derived from the "zero” case data and then uses these polyno-
mials as the basis upon which the curve fits of the other data sets is built up frowm. A mcre detailed dis-
cussion of this procedure is given in Chapter II. The programs are formatted to operate with a UNIX

operating system.

common /pwre/ iibid.no_fena.i_fco

Polyfia.for ¢
external 03
external sqe_ert
POLYFITA.FOR ¢
10 prin¢ *,
primt *,° MENU
Maj L. Hudsoa peint *,
Capt S Zaiser peint °,
print ¢

This program will perform a liest squares curve fiton

experimental data which is resd into the program f{rom existing
guide and data filea. The required {orms (oc these (iles may be

found in comments in the program. The program is currently configured
to pt to fit the experi | data with a predictor equation which
bas a polynomial (orm and is a function of three vaciabies; alpha, beta,
and deita. A detailed discussion of the theory of this prograe may be

print ¢, 3. Grapb data and curve f’
peint ¢, "4 Evaluate the square error’
peint *, 'S, Write results to file’
peink *, ‘6. Create graphing Gles'

N B ANONNDAOOONAABNOBANNANNBON06N0K0MO0ONR N

imphicit real®8 (a-h,0-x)
perameter (max_dats 5000)

found in Appendix A of the thesis. For ease of use the program is menu print *,
driven. peate,
print *, Enter selection:’
See Numerical Recipees for subroutines SYDCMP AND SVBKSB read *, choice
version 01 Aug 8 SMZ [
16 Sep 89 ¢
The guiding file should bave the [ollowing lormat: if (choice.eq.1) then
gotwo 20
line 1: tte eise if (choice.eq.2) then
line 2: output file name. The curve fit coel end up ia this Gle goto 200
in the form of dats satements. eise if (choice.eq.)) then
line 3: sur{ace designation, appended to the results 6 charsctars. write(4,*) Disabled return to menu’
line 4: axay,nz the highest powers desired i the curve firs gow 10
line 5: number of data fles t0 de read. else if (choice-eq.4) tben
goto 675

etse if (choice.eq.5) then
7]
cise if (choice.eq.6) then

[ goto 625
reai*8 limits(3,2),error else I (choice.0q.7) thea
resi*8 x_dawa(3.max_data)y_dsts(max_dsta),choice goto 750
resi*8 coel(100,6).x(3,1000),w( 1000.6),5(13) clse
[ goto 10
character* 50 (iename, outfile, guide slile. gflle endil

charscter® 80 tithe.suthor,data, [acility, date
character®$ surface

charscter*2 [orce

charscter* 1 answar

nteger conavar Lvar2
integer io( 100,6),ib( 100.6),id( 100.6),00_{cne(6).i_task
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¢ The data (iles are in the form
¢ column 0o. item description

c

c
<
<

1 itetn number {or the data file.
2 sngie of sttack.
3 dyriasic pressure




L R R R R I I B R L W

4

¢ Enter the name of the file containing the information to guide the program

yawing moment coelficient
roiling moment coeflicient

SO®Ar e
NS

-]
o

i1 yaw angle
2 not used — Q.0
13 not used —— 0.0

the col identfiers {or respective values

20 ibetamjl

iaipbam2
ilift=?
idrag=8
iside=10
iroll=$
ipitch=9
ysw=4

¢ through the daa input procese.

14

annananonan

6o ao6an

6 anan

660 a0a

write(6,°) Enter the guide file name.’
read(5,31000) guide

write(6,31000) guide

open(15,file= guide,status = 'old")

The guide file contians:

L Tide of the guide file,

L Outfile name.(not used)

3. The control surface which is being varied.

4. Not used.

5. The number of data files listed in the guide file.

read(15,10000) title

write(4,°) title

read( 15,82000) outfile

write(4,°) outfile

read(15,83000) surface

write(4*) surface

read(15,*) nxny.nz

read(15,*) nfiles

write(4,°) The number of files = 'nfiles

Initislize maxitoum values Lo zero.

apts=g
k=0

a_minw=10elS
b_minw=L0el$
d_min=10el$
a_maxw-1.0el$
b_maxw-L0elS
d_mazxw-10el$

Open Guide files and assign the wind tunnel dsta
(0 the sppropriate arrwys for curve fitting,

do 100 = {,nfiles

read(13,90000.end = 75, er= 85) (filename(il:il).i1= 1.19),deits

write(6,30000) flename
open( 14 file w (loname, statue = 'old")

4o 50 j= 1,60
resd(14,%,end =75, err=85) (s(k1),k1=113)
kek+1

The x matrix contains the values of sipha,
beta, and surtace deflects poctively

(LK) =a(iaipbe)

The sign on the beta resdings is negated to conform
to standard comvention (wind from the right).

k)= (-1) * (ibeta)
x(3.k)mdeita

if(R(Lk).ita_min) a_min=x(Lk)
If(R(2K}-Lb_min) b_min=x(2k)
{(x(3k)..d_min) d_min=x(3k)
f(x(Lk).gt-a_toax) s_mazwx(lk)

c
50
7

8s

f(X(Lk).grb_max) b_maxmx(1k)
f(x(3,k).gLd_max; d_max=x(3.k)

w(k, 1) ms(ilift)
w(k.2) ms(idrag)
w(k.3)ms(iside)
w(k.4)=(ipitch)
w(k.5)ms(irot)
w(k.6)ms(iyaw)

continue

close(14)
goto 100

write(6,*) Have bad an error in reading "filename
close(14)

100 continue

<
<

anaaa

close(15)
npts=k

write{6°) The data vanied as {oilows:’
write(6.°) a_min,’ slphs a_max
write(6°) b_min," beta " b_max
write(6.*) d_min," deita ',d_max

Return to menu

goto 10

200 write(6,*) Which force coefficient do you wish to curve fit?”

write(6.°*) '(Enter the cocresponding number.)'
write(6*) '1ify’

write(6°) 2 drag’

write(6.*) "3 side foerce’

write(6,*) ‘4 pitching moment’

write(4,*) 'S rolling mowment *

write(4*) '6 yawing moment’

write(6,*) 7 oc greater (or listing the data’
cead(5.*) ifit

(il g1.6) then

write(6,*) Which data do you wish to examine?
write(6,*) ‘(Enter the corresponding nuaber.)’
write(6,°) ‘1 iy’
write{6,*) ‘2 drag’
write(6,°) 3 side force’
write(6,*) '4 pitching moment’
write(4,*) '$ rolling moment *
write{6,*) "6 yawing moment’
write(6,*) 7 alpba’
write(6,*) '8 beta’
write(6,°) 9 deits’
read(5,) iexam
if(ieam.i6) then
do 400 ijk= Lopts
white(6,*) wijk.icnm)
continue
clse
write(6.®) lennm-ba’icané
4o 500 ijk=1ngts
write(4,%) x(iemam-4.ijk)

500 continue

<
<

550

<
<

end {
clss

Deline the form of the polyoomisl Lo be curve Gt
call bidper(ifit)

continue

Perform the letaqrs curve fic

cail intaqr (B.00_{ens(ifie).x.w( 1,ifit).0pts,coel( Lifit))
do 600 ijkm L.no_{cne(ific)

Write the results of the curve fit Lo screen.

write( 6, 60000) ijk.ia(iik.ifi )bk, 5K iGe),
coef(iji.ifit)

600  continue

[
[
¢
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end il

Retum 1o menu

gow 10




<
¢ GRAPHER AND SURFER FiLE CREATION
<
625 write(6,*) Which do you want to bold constant?’
write(6,°)' L alphs’
write(6,%)" 2 beta’
write(6.*)' 3. dela’
read(5,*) cons

write{6,*) ' What is the first variable?
write(6°)' L alphs’

write(6,°)’ 2 beta’

write(6.*)’ 3. deita’

read(5,*) varl

write(6,°) What is the second variable?’
write(4°)' L alpha’

write(&°)" 2 beta’

write(6*)" 3. deita’

read(5.*) var2

initialize limits matrix with variable ranges

limits{1,1)=a_min
limits(1,2) =a_max
limits(2,1) =b_min
limits(2.2) =b_max
limits(3,1) =d_min
limits(3,2)wd_max
<
[
650 write(6,*) The range on the constant is:'
write(§ *)limits(cona,1),’ constant ', limits(cons,2)
write(4,°) "Do you want to change it?"
read($,80000) answer
if(answer.oq. Yy’ .oc. answer.eq.'Y") then
write(6,*) ' What sbould the lower value be?
re3d($.*) limits(cons, 1)
wnite(6,°) What should the upper value Se?’
read($,*) limits(cona,2)
goto 650

end il

Search {or those experimental data points which [all within
the variable ranges defined above.

o aaa

call find_pts(3w(1,ifit),nptax_datsy_datandata limits,
x CONs,VErl,var2)

write the variable values, force oc moment values, and
evaluated valaes to a data (il for evaluation in ‘grapber’

onaan

write(6,°) ‘Do you want to create s Grapher file?’
read(5,80000) answer

if(answer.eq.'y’ .or. anewer.eq.'Y") then
write(6,*) ‘Enter the file name with .dat:’
read($5,31000) glile
open(10.file = glile,status = 'unknown”)

do 668 im1,ndsta
vall = evisqe(f3,coef( 1,ifit),no_fens(ific).x_data(1.))

<
¢ The Grapber file will have the (oliowing form
description

¢ och 'm0 no. em

¢

c 1 Value of the first varishie.

¢ 2 Value of the sacond variebls.

¢ 3 The experimeontal deta valus at that point.
c 4 The curve fits value st that point.

c S Vaiue of the variabie beid cootiant

4

write(10.32000) x_deta(varl,i).x_dats var2i),y_data(i),
4 val Lx_dete{cons i}

665 continue
close( 10}

enu il

write data (o s file {or evaluation of contour piots in the
‘surfer’ software. These data files contain oredicted values
of the (ores or moment ss a {unction of tbe two specified variables

6n0o6na

write(4*) Do you want Lo creats a2 Surfar file?
read(5,80000) answer

il(answer.aq.'y’ .oc. answer.eq.'Y") then

call surf(coef( Lafit) imisilitcons var l.var)
end if

3
¢ Retum wo menu
<

goto 10

Define the r squared value of the curve fit and provide
tbe opportunity to modify the form of the polynomial

0 aaan

675 error = sqr_err(xw( Lifit),npts,coef( Lfit), fit)
write(6,°) * :
write(6,*) The vaiue of r squared is *error
write(6,°)

write(6,*) What do you want next?

write(6,°)’ L Remove powers (rom the approxmating functions’
write(6°)"  and refit.’

write(6°)’ 2. Add powery'

write(6,°)" 3. Quit’

read(5,%) i_task

if(i_taskeq.1) then
write(4°)' What is the smallest magnitude you wish Lo keep’
write(6,)’ in the current (it?'
read($,*) bound
call m_coef(coef( 1,ifit),bound,ifit)
goto 550
cise if (i_task eq.2) then
call addcoef(coef( Lifit),ifit)
goto 550
else
<
c Return to menu
c
goto 10
end il
725 call output(coef( Lifit),ifit.erroc)
¢
¢ Return o menu
<
goto 10
¢
<
10000 format(a80)
20000 format(2x,e15.8,3(2x,3)," coef, ia, ib, id *, i3)
30000 format( 5x, 'reading from ', 340)
31000 (ormat(a50)
32000 format(S(1x e15.7))
60000 format(" (cn no=,i3, ia=' i}, ibw'i3," idw’3, coel=’,
x  ell$)
80000 format(al)
82000 format(240)
83000 format(a$)
89000 {ormat(i4,’ alpha=",[10.5,' beta = (10.5,’ deitaw’ (5.2,
x ' coelm’ 2010.5)
90000 format(2x, 1991.3%.£5.2)
750 STOP
END

¢ LSTSQR

n

subroutine istsqr(functn.nf.xw,npts.coef)
implicit real®8 (a-b,0-1)
perameter (msizew= 100)

4
¢ functn is an explicit function giving the set of fitting functions
¢ to be used 1 the lesst squares curve (itting process.
It has the following parameter list:
funcoy( nfncxk )
The arguments are:
ninc = the identification number of the functio to be used.
2 = an array of arvuments of the function.
t = the index to the argument 1o use in the evalustion
of the function.

peovided by functn.

X is the array of values st which the known vaiues are given.
{t may be one di ional or muiti-di sonal

¢
c

[

(4

4

<

¢

¢ nf is the oumber of functi ined in the (amily of functions
<

<

<

¢

¢

¢ w isbe arrey of known values to be curve fitted.

<

npts s the number of points 1o be curve fitted.




real*8 a( maze.msize),rhs(msize)
external functn

Assembie the matricies Lo be Used in determining the
coefici of the poly | predictor equation. A
00 of the "

Aptaited di

P of these matricies
may be found by referencing the thess.

660 a6anoan

do 400 j=1,nl
write(6,*) Setting up equation no',i
do 200 j= 1nf
a(ij)=0.0
do 100 k= Lnpts
a(ij)=a(ij) + funan(ixk)*funcin(j.xk)
100 continue
200  continue
rha(i)=0.0
do 300 k=1Lnpts
cha(i)mrba(i) + (unctn(ixk)*w(k)
300  continue
00 contnue

<
¢ coe{ is the array of cocllicients weightng the funcuons
¢
real®8 x(1),w(1),c0el(1)
i write(4,*) Solving the linear equations in lstsqr.'

<
< Solve the lincar problem which has been setup.
<
call swd_soive(a,rbe,coel,nf,nf, meize. maize)

< do  500i=minf
< write(6,*) i, coef(i)
¢ 500 continue

write(6,*) Finished in lstaqe.’

rewurn

end

SQR_ERR

n6ana6a

reai*8 function sqr_err(xw,npta,coet,i_[n)

The purpose of this subprogram is 1o calcui .te the value of
r squared as a measuce of the ‘goodness’ of the curve fiL

o600

implicit real®8 (s-h,0-z)
real*8 x(3,1000),coef( 1),w( 1),erroc sum L nerr, esqr
real®8 sum2,sum3, raqr, mean, wipin wmax
integer ia( 100,6),ib( 100,6),id( 100,6),00_(crrs(6)
common /pwrs /ia.ibid.no_fcn,i_fen
external B
sumi = 40
sum? = 0.0
sum) w 0.0
wmin = LOel$
wmag = -10el$
do 100 = Lnpts
(w(i). gL wmax) wonax = w(i)
sum] = suml + w(i)
100 continue
mesn = suml/ npts
do 200i= Lnpts
esqr = evisqr(D.cosl.no_fere(i_{n).x(Li))
error] = w(i) - eviaqr(D.coel.no_fcoa(i_fn).x(Li))
um? = sum? + (errorl)**2
wml = sum) + (w(i) - mean)**2
200 continue
rsqr = | - (surm2 /mam3)
qr_err = raqr
retrn
end

F3

6606 a0n

reai*8 function O(ixk)

mplicit real*8 (a-h,0-8)

real*8x(3.1)

integer ia(100,6).ib( 100,6),id( 100.6).n0_fcne(6)
common /pers fa,ib.id.no_fomi_{cn

f (Lge 100) write(6,*) *** ERR - undeciared function for ="

slpha = x(1.k)

bes = g Lk)

deita = x(3.x)

3= poly(ia(ii_fen),alpba)

X *poly(ib(ii_fcn),beta)

x *poly(id(ii_fen),delta)
return

end

BLDPWR

a6oo0oaan

subroutine bidpwr(i_fn)

¢
¢ The purpose of the subprograa is Lo systematically create a common stat-
ment

¢ which defines the polynomial terms Lo be used (or accomplisbing the curve
¢ fit. In general the poly ial will invoive binatsons of three vanabies

¢ See Ref in appendix A of thesis.

3

integer is(100,6),ib(100.6).id( 100,6),n0_cns(6,
common /pwrs fiaib.id.no_fonai_fen
integer alp, bet, ded, comb

[
ifenmifn

50 write(6.*)' Do you want o'
write(6°*)’ L Generate all combinationsof powers’
write(6,*)’ Z Enter specific combinations of powers’
read(s,*) §

i(ij-eq-1) then
write(6,°) "What order do you want alpha fit to be?’
read(5,°) na
write(6,*) "What order do you want the beta fit 1o be?
read(5,*) nb
write(6,°) ‘What order do you want the deita (it to be?
read($,*) nd
k=l

o

This routine generates alt permutations of the powers specified

do 300il=Qna
do 200 2=0,0b
do 100 3=0nd
ia(k,i_fcn)=il
b(ki_{cn)wi2
Wd(ki_lco)wi3
k=k+1
100 continue
200 contioue
300 continue
combmna®ob’nd
else if (ij0q 2)ux *

This routine allows ( .« “pecification of 2 specific set
of terms.

nooao

ke}
peint *, ‘enter the sumber of combinations desired’
read *, comb
do 800 j= Lcomb
print *, ‘building combination’, k
pnnt *, ‘enter Lhe power cn sipbs’
read °, alp
print *, ‘enter the power oa beta’
read *, bet
print *, ‘enter the power o deits’
cead ®, del
is(ki_ea)=sip
ib(k.i_fen)mbet
d(ki_(cn)mdel
kak+l
300 .
clas
goto 50
end
do 900 j= L combd
print *. ia(ki_fen), d(ki_fen), id(ii_fen)
%00 .
ao_lena(i_fen) =k -1
write(6*) no_{cos(i_fcn)," functions initislized in bidpwr.’
cetum
end




#

N #88000080s0000 000000
<
real®8 function evisqr’ functn, coef.nf.x)

implicit reai*8 (a-h,0-2)

[+
¢ This functions evalustes the curve fit at the first pointin x.
[4

real*8 coef(1),x(1)

external lunctn

evisgr=0.0
do 100 im 1,nf
evisqraevisqr + coef(i)*functn(ix 1)
100 continue
retum
end

POLY

oNnnano

real*8 function poly(nfne,x)
implicit real*8 (a-h,0-1)

This function retums values of the family of polynowmials.

nfnc gives the power 10 raise X to.

6o60ann

if{nfnc.eq.0) then
poly=10
cise
if (x2q.0.0) then
poly=0.0
cise

poly=x**ninc
end if
end
reuun
end

RM_COEF

66000

subcoutine rm_coel(coef,bound.i_{n)

implicit resl*8(a-h.0-2)

real*8 coef(1)

integer ia(100,6),ib( 100,6),id(100.6),no_(cns(6)
com@mon /pwrs fia,ib.id.no_tene.i_(cn

The purpose of this program is to remove those
polynomial lerme whose coeficients ace smaller than
2 specified value. Thic routine needs work.

ana0o6a

write(6,*)In rm_coe{ with bound=',bound
write(6,*)'00_(cns »',no_{cne(i_(n)
write(4,°)_fn=",i_n
im]
100 continue
if( dabe(coef(i)).i. bound) then
if(L.neno_fcns(i_fn)) then
do 200 j=ino_fens(i_tn)-1
ia(ji_n) = ia(j+ Li_fn)
ib(j.i_tn) = ib(j+ Li_tn)
id(j,i_tn) = id(j+ Li_tn)
coef(j) = coel(j+1)
200 continue
end {
s(no_(com(i_tn),j_fn) = 0
ib{no_(coa(i_tn),i_(p) = 0
id(no_(coe(i_tn),i_(n) = 0
coef(no_fere(i_fn)) = 00
no_{cne(i_fn) = no_fcne(i_fn) - 1
end d
imiei
il(Lle.no_lcns(i_(n)) goto 100
write(6, 10000} no_fcne(i_{n)
do 300 iw Lno_tcne(i_{n)
write(&,20000) iia(Li_fn).ib(ii_fn).id(ii_fn)
300 continue
ceturmn
10000 (orma(’ The number of functions i '.i3)
20000 formet( i’ iaw’i3," ib=' i), id=",i3)
end
[
<

606060
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<
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ADDCOEF

subroutine addooef(coeL.i_fn)
implicit reai*8(a-h,o-z)

The purpose of this subcoutine is to provide a
means (or adding polynomial terms to an exsting
predictoc equation.

real*8 coef(1)

integer ia( 100,6),ib( 100,6),id( 100,6),no_fcns(6)

intager comb,newem

common /pers /ia,ib,id.0o_fcns.i_fcn
print *, ‘enter the number of additional combinations desired’
read *, comb
k=1 + no_fens(i_(n)

Assembie the additional polynomial terms and
append them (o the existing polynomial

do 800 j=1,comb
peint *, building combination', k
print *, 'enter the power on alpha’
read *, alp
print *, ‘enter the power on beta’
read °, boe
print *, ‘enter the power on deita’
cead ¢, ded
ia(ki_fon)maip
ib(ki_fcn)mbet
W(ki_fen)mdel
kwk+1
800 continue

no_{cns(i_[n) = no_fcns(i_fn) + comb

return

end

OUTPUT

subcoutine output(coef.ifit,rsqr)

Tbe purpose of this subprogram is to write the values of the polynomial

coeficients and respective powers 10 an output file.

integer ia(100,6),ib(100,6).id(100,6),n0_tcns(6)
common /pwrs fia,ib,id,n0_fcnai_fen
real*8 coef(1)

open(16.file = data statuw = ‘'unknown
print *, Enter the control surface:’
read($,15000) control
print *, Enter the loroe being G’
read($,15000) forcs
write(16.°) control
write(16,°) force
write(164°) rqr
write(16,*) 0o_(cna(ific)

do 100 ijk= Lno_fcna(ifk)

The output file will bave the following form

Countar of term number.

Power oq alpha [or that term.
Power oo beta (o€ that tecm.
Power on deita {or thet term.

g S

write(16,80000) ijk,in(ijk.die),ib(ijk,ifit),id(ijk.ifit),
x coef(ijk)
100  continue

close( 16)
write(6.%) ‘output file complets’

10000 (ormat(240)
15000 (ormat(al4)
80000 (ormat(4( 1%.i4.2), Lx.(10.8)

retum




end

FIND_PTS

o600

subroutine find_pts(xy.no_data.x ptay_pts,no_pls.limita,

X cons,var Lvar2)
¢
¢ The purpose of this routine is to search through a set of data poins. x,
¢ and collect the points which fall within the limits specified.

x == points in the domain
y == functional values associated with X
no_dsta= = number of data points total.
x_pts == points which are found within the limits
y_pts == functionsl velues associated with x_pts
no_pts == number of points found.
limits = = the bounds of acceptability on the data points.
limit(ij), j= 1 for lower limit

j=2 for upper limit
constant = = the variable which is beid constant.

no6ooaoanooaaan

integer cons,varlvar2
real*8 x(3,1).9(1)
real*8x_pts(3,1),y_pu(1)
real*8 limits(3,2)

no_pts = 0
40 300 i=1,n0_data
if(x{cons.i).it limits(cons, 1} .or.
x x{cona,i).gt.limits(cons,2)) goto 300

nf it gets bere, then it is within limits.

6o 6an

no_pts = no_pts+1
x_pts(varLno_pts)=x(varLi)
X_pts(var2,no_pis) =x(var2,)
2_pta(cona.00_pts) =X conm.i)
y_pu(no_pts)=y(i)
300 continue
return
end

SURF

6 6o0aan

subcoutine surf(coel limits,ifit,cons,var Lvar2)

The purposs of this subprogram i (O create an arryy of data for
use in SURFER'. The first column of data is the first variable, the
second the second, the third is the evaluated (orce or moment value
and the fourth column is the value of the variable beld constant.

a60o0oo0aa

implicit reai’8 (s-h.0-2)

parameter ( 0o_dive=25)

charscter * 40 sfile

real®8 x(3),dx(3),0-% 1), iemits(3,2)

real®8 s(no_dive + 1),t(no_dive + 1),y(no_dive +1)

integer is( 100,6),ib( 100.6),id( 100,6),n0_{com,cons,var Lvac2
common /pers fia,ibid.no_(crne(6),i_fcn

external 3

¢ Generste data arruy o be plotied.

d_x = (hmita(var1,?) - kmits(verl,!))/oo_dive
d_y = (limits(var22) - limits(var2, 1)/no_dive

<
¢ Initislize the varisble in the £ acrwy which is constaat

(1) O5°(lienita(1,1) + kemita(12))
(2)= O5° (kenita(2.1) + fiemita(2.2))
X(3)= A5° (lenita(3.1) + timicn(3.2))

write(4°*) "Erer the lile name with .det:’
re3d(5.31000) afile

open( 1 Llilewliie.statun = 'unknown")
do 150 j=Lao_dive
1(j) = limits(vard.1) + (31)°dy
do 100 im1,no_dive
i) = Lienita(varl 1) + (i-1)*d_x
(varl)we(i)

77

x(var2)m(j)
¥{(1) = evisqe({3,coel,no_lens(ifit).x)
write( 11,32000) x(var1),x(var2).y(i).Xx(cons)
100 contnue
150 continue
close(11)
return
31000 format(a40)
32000 format(4(1x.¢15.7))
end

subroutine svd_solve(a.b.x.n.m.np.mp)
implicit real*8(s-h,0-2)

Parameter (nmaxw= 100)

real’8 A(mp.op). W(nmax),V(nmax**2)

call svdemp(s,num,0p,mp,w,v)
wmax = 0.0d0
do 100 jw Lo
if (w(j).gL.wmax) wmax = w(j)
100 continue
wmin » wmax®1.0d-12
do 200 j=1,0
if(w(j).IlLwrpin) w(j) = 0.0d0
200 continue
all svdksb(a.w.v,0.m.np,mp.b.x)
return
end
include svdemp.for
include svbksb.for
Potyfith.for

POLYFITB.FOR.
version 01 Aug 8 SMZ
The guiding file should have the (ollowing lormac:

line ): Ude
line 2: output file oame. The curve (it coef end up in this file
in the form of data statements.
line 3: surace designation, sppended to the results 6 charscters.
line 4: nx ay,na the highest powers desired ia the curve fits.
line §: aumber of data files 10 be read.

NneoNAOOGOOBOO0G6G

implicit real*8 (a-b,0-3)

parameter (max_data = $000)

real®8 limits(3,2),ecror

resi®8 x_data(3,max_data)y_data(max_dsta),choice
reai*8 coef(100,6),%(3, 1000),w( 1000,6),5( 13}

integer cons,varlvacl
integer ia( 100,6),ib(100,6),id(100,6),00_fcns(6).i_task
common /pers / inibid.no_lconi_fen

paint <, 2 Curve fit data’

peine *, 3. Graph dets end curve ¢’
print ¢, "4 Bvaluste the square error’
print ¢, 'S. Writs results to s’
print *, ‘6 Creste graphing files’
peint *, 7. Exit program’

Pﬂﬂ('
prink *, Enter selection:’
read ¢, chowe




4
<

<
[
<
[
[
<
4
c
<
4
<
4
<
<
<
<
<
<

if (choice.eq.1) then
goto 20
eise if (choice.eq.2) then

goto

eise il (choice.eq.3) then
goto 10

else if (choice.eq.4) then
goto 675

else if (chonce.eq.5) then
goto 725

else if (choice.eq.6) then
goto 625

else if (choice.eq.T) then
goto 750

clse

goto 10
endif

The data files are in the form
column na. item description

item number for the data (ile.
angle of siack.

drag coefficient

pitching moment coefficient
side {orce coefficient

yaw angle

not used —— 0.0

not used —— 0.0

L - N R e
g
da4d
g
]

—
—o

R

the columa identifiers (or respective values

20 ibeta=11

naaao

<
<
<
[
¢
<
[

<

ialpha=2
ilifkm?
idrag=8
isidem 10
irolim$
ipitch =9
yawm4

Enter the name of the (ile containing the information o guide the program
through the dat input process.

write(6,*) Enter the guide (ile name.’
read(5,31000) guide

write(6,31000) guide

open( 15, file = guide,status ='oid")

the main (ile contians:

L title card to be included 8¢ 2 comment kine in the data statements

2 nx,ny, and nz the orders of sipba,beta and deita fits. NOT USED

3. nfiles the aumber of file names to follow,

4. a list of (ile names containing the data for individual alpha sweepe.
one (ile name per lina.

¢ The output is in the form of a data statement for each coefficient.
<

<
<
c
<

read( 15,10000) titse
write(4,°) title

write(6,°) The number of lies = ‘nliles
[nitiakize maximm values 10 zer0.

open(12file = 'dsta.all’ status = 'unknown”)
npts=
k=0

a_minw L.0el$
b_min= L0s1S
d_mine L0e1$
a_max=-10el$
b_max=-10s15
d_maxw-10el5

do 100 i= |,nfiles
read{15,90000,end = 75 err = 85) (filename(i1:11).i1 = 1,19),deita
write(6,30000) (ilename
open(14,file=filename, status = ‘old")
<
¢ must add a control setting value 1o the bepnning of each data file.
¢
do 50 j=1,60
read(14,*.end=75 err=85) (s(k1),k1=1,13)
k=k+l
x(1.k)=s(ialpha)
A2K)= (-1) * s(ibets)
3 k)mdeita
(x(Lk).JLa_min) a_min=x(1,k)
if(x(2k).ILb_min) b_min=x(2,k)
if(x(3.k).ILd_min) d_min=x(3 k)
if(x(1k).gta_max) s_magmx(Lk)
if(x(2k).gLb_max) b_max=x(2k)
if(x(3,k).gt.d_max) d_max=x(3,k)
w(k,1)=s(ilift)
w(k.2)ms(ideag)
w(k.3) ms(iside)
w(k.4)mo(ipitch)
w(k.5)ms(icoll)
w(k,6)mo{tyaw)
50  continue
7 close(14)
goto 100
85  write(6.°) Have had an error in reading 'filename
close(14)
100 continue
close(15)
nptsmk
[4
[
write(6,*) The data varied ae {otiows:’
write(4°) a_min,’ alpha '.2_max
write(4.°) b_min,’ beta ',b_max
write(6,°) d_min,’ deita ".d_max

continue
goto 10
200 write(4°*) "Which case do you wish (o work with?”
write(4.°) * '
write(4°) 1. Fized®
write(4°) "2 Float’
write(6°) 3. Missing’
read($,*) icase
if (icase.eq. 1) then
call fixzer (icase)
clse if (icase.eq.2) then
call flozer (icase)
chie if (icase.0q.)) then
call miszer (icase)
cse
goto 200
endd

write(6*) Which force coefficient do you wish Lo curve fit?
write(4*) ‘(Enter the corresponding number. )’
write(6,°) "1 it
write(4,*) 2 drag’
write(6.*) 3 side lorcy’
write(4.*) ‘4 pitching moment’
write(4,°) 'S rolling moment
write{6,*) '6 yawing moment’
write(4°) 77 or grester (or fisting the dsta’
read($.%) ifit
if(ili. gL 6) then
write(6.*) "Which data do you wish (0 examine?”
write(6,*) ‘(Enter the corresponding number.)’
write(6°) "1 i’
write(4.°) 2 drag’
write(6.°) " side (orce’
wriie(6,*) 4 pitching moment’
write(6*) 'S rolling moment *
write(4,*) '6 yawing moment’
write(4.°) 7 aipha’
write(6,%) '8 beta’
write(4°) '9 delta’
resd(5.*) iexmm
if(iexam.it. 6) then
do 400 ijk = L,npts
write(4°) w(ijkiexam)




400  conunue
eise
Wite(4,*) exam-6=" iexam-6
do 500 ijk = L.npts
write(6,*) xicxam-6.ijk)
500  continue
end if
eclse
i_fen = ifit
< call bidpwr(ifit)
550 continue
call lstsqe (£3,n0_(ena(ifit),xw( Lifit),npts,coef( Lifit))
do 600 ijk= 1.no_fens(ifit)
write(6,60000) ijk, ia(ijkifit),ib(ijk.ifit)id(ijkifit),
x coef(ijkafit)
60 continue
=nd i
guto 10

GRAPHE®. AND SURFER FILE CREATION

606 6a6a

625 write(4,*) Which do you want to hold coastant?’
write(6,*)’' L alpha’
write(6,°)’ 2 beta’
write(6,%)' 3. deita’
read($,*) cons

write(6,°) ' What is the first variable?’
write(6,°)" L alpba’

write(6,%)' 2 beta’

write(R°)" 3. deks’

read(_,*) verl

write(6,*) What is the socond variabie?’
write(6,*)’ L aiphs’

write(6,%)" 2 beta’

write(6,°)’ 3. doita’

resd($,*) var2

initialize limits matrix with variable ranges

limita(1,1)=a_min

liemita({1,2) =a_max

limits(2,1)=b_min

limits(2,2) mb_max

limits(3,1)=d_min

limita(3,2) =d_max

<
<
650 write(6,°) The range oa the constant is:'

write(6,*)limits{cons, 1),” constant ' limits{cons.2)

wote(6,*) 'Do you want tw change it?

read($5,80000) anewer

if(answer.eq.'y’ .0c. snswer.eq."Y") then
write(4,°) What should the lower value be?
read(5,*) limits(conm. 1)
write(&,°) ' What should the upper value be?
read($,*) limits( cons.2)
o0 650

end if

call find_pta(xw(Lifit).nptax_datay_data.ndata limits,

x cons,varLvar2)

writa the variebie veles, force or moment values, snd
evaluatad values to s deta file for evaiuation in ‘grapber’

write(6,°) Do you want 10 creasts s Grapber Gle?"
read($,80000) anewer
i{(snswer.aq. Y .or. snswer.eq."Y") then
write(6,°) "Enter the Gle oeme with .det:’
read($,31000) gfile
opery( 10.fle= gfile,setue = ‘nknown’)
do 665 i= Lndats
vall » e r(Dicosf(Lit.  _fene(ift).x_dma(Li))
¥Tite( 10.32000) x_data(verl,).x_data(vardily_data(i),
x vallx_data(cons.i)

665 continue
close(10)
end it

aaona

write daa 10 a file for evaluation of contour piots in the
‘surfer’ sofltwere

anaao

write(§,*) Do you want Lo creste » Surfer (ile?

79

read($,80000) answer

{answer.eq.'y’ .oc. answer.eq.'Y") then

call gen_petr(coef( L,ifit). limits,ifit.cons, var L var2)
end il

gow 10

675 etror = sqr_erv(xw( Lifit),npts.coef( L,ifit),ifit)
write(6,°) " '
write(6,°) The vaiue of r squared is *error
write(4°)

wr *¢(6,°) ' What do you want nemt?
write,., , 1 Memove powers from the approximating {unctions'
write(6,°)' and refit’
write{6,*)" 2 Add powers’
write(6.°)" 3. Quit’
resd(5,*) i_task
i(i_task.eq.1) then
write(6,*)' What is the smallest magnitude you wish o keep'
write{4,*)’ in the current fit?’
read($,*) bound
call rm_coef(coef( Lifit),bound.ifit)
goto $50
cise if (i_task.eq.2) then
cail sddeoel{coef( L,ifit).ifit)
goto 550
cise
goto 12
end if
725 call output(coef{ Lifi:),if*,error)
goto 10
<
[
10000 format(a80)
20000 {ormat(2x,¢15.8,3(2x,.3)," coel, ia, b, id *, i3)
30000 format( $x, "reading from ' ,a40)

250)

32000 format(5(1x.¢15.7))

60000 format(’ fen no=',i3," we'i3,’ b=’} id="i)" coel=’,
x  el2$)

80000 format(al)

82000 (ormat(a40)

83000 format(aS)

89000 format(i4,’ alpba='10.5," beta="[10.5,' dettam' (5.2,
x * coef =’ 2f10.5)

90000 {ormai(2x,19e L.3x.05.2)

750 STOP

END

FIXZER

6a6060a0a

subroutine (xzer(icase)

integar in(100,6),id(100,6),id( 100.6),no_fcns(6)
common /pwrs fsibid.no_fcns.i_fen

integer aip, bet, del comb, nofo

reai®8 2000((100,6).5(5), raqe

integer lift.drag side.pitch.rollysw

el
deng =2
side= 3
pitch = 4
roll=$
yaw =6

column identifiers

n

fons = 1
ialpbs = 2
ibeta » 3
ideita w 4
afeS$

open(14flewfxzl.dat’ ='old")
read(14,*) control

write(6*) conerol

read(14,*) foros

write(4,°) force

read(14°) ragr

write(4°) g




read(14.°) nofn

do 15 j= 1,60
read(14,° end= 25, err=35) (s(k1),k1=15)
ia(jlft) = s(ialpha)
ibj(ift) = s{ibeta)
id(j.lift) = s(ideita)
200ef(jift) = ¥(izel)
no_{cna(lift) = s(ifcrm)
15 continue

23 close(14)
35 write(6°)'Reading fixzLdat’
close(14)

¢ do40j= Lno_(cns(lift)
¢ print *, ia(jlift),ib(jlifr),id(j.lift), zcoef(j,litt)

40  conunue

¢
c

open(14.filew 'fix22 dat’ status = 'oid")

read(14,*) conurol

write(6,*) control

read(14,%) force

write(6.*) force

read(14,°) raqr

write(6,*) raqr

read(14.*) noln

do 45 j= 1,60
read(14°.end = SQ,errm 51) (s(k1),k1=L5)
ia(j,drag) = s(ialpbs)
ib(jdrag) = s/ ibeta)
}(j,drag) = s(idehta)
zooet(jdrag) = s(izcl)
no_[cne(drag) = s(ifcns)
45 continue

S0 close(14)
51 write(6°) Resding fixz2.dac’
closey 14)

¢ doSSjm Lno_fea(drag)
¢ print *, is(j,draghib(j,drag),id(j,drag).zcoef(j.drag)

55 continue

c

open’ 14,filew Tixz3.dat’ status = old")
read(14,°) control

write(6,*) control

read(14.*) force

write(6,°) (orce

read(14°) rnge

write(4,°) rqe

read(14,°) nofn

do 65 j= 1,60
read(14,° codm 7S, erv= 77) (3(k1)k 1w LS)
is(jside) = o(iaipha)
ib(jside) @ s(ibeta)
id(j.0ide) = o(ideia)
coef(juside) = o izcf)
no_fcne(side) = s(ifons)

65 contnue
7S close(14)
77 wree(4°) Reading fxxl.det’
ose(14)
¢ do80j = Loo_fcne(side)
¢ print®, is(jeide) ib(haide).id(jaid £(j.side)
80  contioue
c
<

open( 14 lle= Taad.dat’,statis = ‘old")

read(14,°) contral

write(4,°) control

read{14,%) force

write(4°) lorce

read(14,°) reqr

write(4,°) regr

read(14,*) nofn

do 98 jm 1,60
read(14.%,end = 100,err=105) (s(k1) k1= 15)

80

1a(j.piich) = s(ialpha)
1b(j.prtch) = s(ibeta)
id(j,prtch) = s(idelta)
zcoef(j,pitch) = s(i2c)
no_fens(pitch) = s(ifcns)
95 continue
100 close(14)
105 write(6,*)'Reading fixzd dat
close(14)
c dol10j= Lno_fcns(pitch)
¢ print *, ia(j,pitch),ibj.pitch),d(j.pitch). zooef(jpitch)
110 continue
c
¢
open(14.filem 'fixzS.dat’,status = ‘old")
read(14,°) control
write(6,*) control
read(14,*) force
write(64,*) force
read(14,%) raqe
write(6,*) raqr
read(14,*) nofn

do 115 j= 1,60
read(14.° end = 125, ecr w 127) (s(k1).k1=15)
a(irolt) = (iaipha)
ib(j,roil) = s(ibeta)
id(j,roll) = s(idetta)
zcoef(jroll) = s(izcl)
no_tcns(roll) = s(ifcns)

115 continue
125 close(14)
127 write(6°) Reading fixzS.dat’
close(14)
¢ do130) = Lno_(-ns{roll)
¢ print®, ia(j,roll),ib(jroll),id(j.coll).zcoef(j,roll)
130  continue
¢
¢

open(14.filew Tuzb.dat’ status ='old")

read(14,*) control

write(§,*) control

read(14,*) force

write(6,*) force

read(14°) rqe

write(6*) rsqr

read(14,%) nofn

do 145 jm 1,60
resd(14,% end = 150,err= 155) (s(k1).k 1= 1.5)
a(iyew) = s(isipba)
ib(j.yaw) = s(ibets)
id(jysw) = s(ideita)
200 (jyaw) = s(izct)
no_{cna(ysw) = oifcns)
145 continue
150  close(14)
155 write(6,*) Reading fixzé.dat’

¢ dolédjm ino_fcne(yww)

¢ prink . inGwe ), bymw). () 2ooel G yew)
160 continue

rewm

end

FLOZER

f6aonaan

indude (lozer

MISZER

anoan

include miszer

6660660

include letagr.for




66000 660000 noaana a6 a6naaon o a6n neoeooon o060 noa6a o6 6na n6ooan

ano60an

SQR_ERR

‘nclude sqr_eer.for

include 03.for

essee

BLDPWR

inciude bidpwr

EVLSQR

include evisqr.for

POLY

nclude poly.for

RM_COEF

include rm_coeffor

ADDCOEF

include addcoel.for

OouTPUT

include output loe

FIND_PTS

include find_pua.foc

GEN_PCTR

include gen_petr

SVD_SOLVE
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APPENDIXC

Introduction

Included in this appendix are the “polynomial equations” used to predict the aircraft control and
stability derivatives for use in the trim analysis. Each set contains the following information. The data
set on which the liest squares curve fit was accomplished to obtain the polynomial coefficients; i.e. zero,
right horizontal tail etc.. The force or moment coefficient represented, the r squared value calculated in
fitting the experimental data, and the number of terms in the polynomial. The columns of the data file
contain the following values:

1. Number of the polynomial term

2. Power on the alpha term

3. Power on the beta term

4. Power on the delta term

S. Coefficient Associated with that term

1 ili svati 11 02 00 000.00114791
Aircraft Stability Derivatives e aanss
o
side
zero 0.98699308975 102
i 8
lift
99095 786134833 01 00 00 00 00000000
3 ™ 02 00 01 00-.01817564
01 00 00 000.02425990 M 00 02 00000011201
02 00 01 000.01176668 04 00 3 00-.00003553
3 00 02 000.0X7INS 05 01 00 00-.00007302
04 00 03 00-.000629% 06 02 ™ 00000001572
05 00 04 00-.00059436 07 02 01 000.00000599
06 01 00 000.07041496 08 03 00 00-.00000196
07 01 02 00-.0000109 :w:
:om 00 00-00a294s3 0994195886318
9
drag
999273969971 01 00 00 00000912653
‘xlz * 02 00 01 00..00872458
01 00 00 00000989113 03 00 02 00-,00697840
02 00 01 000.00030617 04 00 03 000.00019974
G 00 02 000.00082931 05 00 04 00000018126
04 00 03 00-.00002382 06 01 00 00.01944657
05 00 04 00-,00002320 07 01 01 00-.00003131
06 0L 00 00-.00090749 08 2 g :..mmg
07 01 01 000.00017652 09 -
08 01 02 00000006501 ,'::
09 01 03 00-.00001032
10 01 04 00-.00000963 Q9TABITIE6N

i)
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00 (.00000000
00 -.00206500
00 0.00002188
00 0.00000592
00 0.00003762
00 -.00001006
00 0.00000007
00 0.00000007
00 0.00000083
00 0.00000072
00 -.00060005
00 0.000¢"003

8888
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01
01
01

ZRIRELEI=2
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832883=2888=8

8
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g
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00 00 0.00000000
01 00 0.00598800
02 00 -.00005049
00 00 -.00008376
00 0.00006041
02 00 0.00000241
00 00 -.00000379
01 00 -.00000559
00 00 0.00000044

gg3r&ga282"°
888222888
<o

Aircraft Control Derivatives

n
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n
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01 00 00 01000005379
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10
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833up§EGSS“F
el ey

288
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3
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Ibe
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3

01 00 00 010.00052168
02 01 00 010.00000432
03 00 01 010.00000226
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3

01 00 00 010Q.00055588
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3
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03 00 01 010.00001087
e

sde
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3

01 00 00 010.00003387
@2 01 00 01-00004212
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e
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0.99528090340029

3

01 00 00 01-0001T172
02 01 00 01-00002018
03 00 01 010.00004164
e

roll

0.94950568502171

3

01 00 00 01..00006718
02 01 00 010.00001683
03 00 01 01-00000630
e

yow

Q9060954647448

3

01 00 00 01..00002596
02 01 00 010.00001220
@ 00 01 010.0000105)
o

(73

Q99710450888523

3

01 00 00 010.00808747
02 01 00 01..0000727%
03 00 01 01.0001623
o
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QAMBITTSITE
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01 00 00 010.00004459
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71363142610
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01 00 00 01-.00124298
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APPENDIX D
DEVELOPMENT OF EQUATIONS FOR TRIM SURVEYS

Introduction

In the quest to gain insight into the nature of the stabiliiy characteristics of an impaired
aircraft it is necessary to derive the equations which will describe a state of equilibrium for the aircrafi
in flight. The derivation of these equilibrium, or trim, equations will follow the more detailed discus-
sion found in [6:203-233]. In this chapter the nonlinear equilibrium equations for an aircraft in rec-
tilinear flight will be derived. A functional relationship for describing the aircraft pitch ancle in terms

of angle of attack, roll angle and side-slip angle is also derived for use in Chapter IV of the thesis,

Derivation of Equilibrium Equations

The following assumptions are stated at the beginning of the derivation of the aircraft equa-
tions of motion and will be re-referenced at appropriate points in the derivation.

1. The aircraft is assumed to be a rigid airframe.

2. The carth is assumed to be an inertial frame of reference.

3. The aircraft mass and mass distribution are assumed to be constant.

4, The X-Z plane of the aircraft is assumed to be a plane of inertial symmetry.

Four orthoge: - ight handed coordinate systems are defined so that the location, orieata:
tion, and motion of the aircraft may be conveniently described. The aerodynamic forces and moments

will also be referenced in these axis systems.




Earth Fixed: The earth fixed frame is rigidly attached to the earth and is oriented so that the
Z axis is collinear with the gravitational acceleration vector. In light of assumption number 2 this frame
is considered to be an inertial coordinate system.

Body: The Body frame is one of three body fixed frames which are defined such that their
origins are rigidly attached to the center of gravity of the aircraft. The Body frame is oriented so that
the X axis proceeds positively out the nose of the aircraft. The Y axis is defined to be positive out the
right wing of the aircraft and the Z axis is located normal to X-Y plane.

Stability : The Stability axis system is also a body axis system which is rigidly attached to the
aircraft center of gravity. The Stability axis system is defined by rotating the Body axis system about the
Body Y axis until the stability x axis, Xs, is collinear with the projection of the velocity vector on the X-
Z plane of symmetry. The Stability axes are denoted with capital letters subscripted with a small s. A

pictorial representation of the Body and Stability axis systems is shown in Figure 32

Ts00Y" : g,;

TSTABILITY

V,RELATIVE
anm.mr, Zy0py o1

-~

Figure 32 Body and Stability Axis Systems
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Wind: The last body axis system defined is the Wind axis system. It is defined by rotating the
Stability axis system about the Zs axis until the x axis, Xw, is collinear with the free stream velocity vec-

tor V. The Wind axis are denoted with capital letters subscripted with a small w.

Given a rigid body, Assumption 1, its position and orientation in space can be completely
described with six coordinates. For this reason, aircraft are often referred to as six degree of freedom
systems. For aircraft motion studies it is usually most desirable to work with a reference frame which is
rigidly attached to the aircraft. The Body axis system is therefore selected as the coordinate frame in
which the derivation of the aircraft equations of motion will be accomplished. The aircraft rectilinear

velocity vector ¥ and angular velocity vector Q cre defined in the Body axis system as:

V=0Ui+Vj] + Vk (D.1)

~ 2 ~ (D.2)

With these quantities defined the linear and angular momentum vectors of the aircraft are

definad as:

el
]
)
<

(D3)

§-1-3a 04

i Ixz -Ixy I, )
(D3)
I = ]-1 I -1
- yx Yy y=z
T.x T zy Iz
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The definition of the individual elements of this matrix may be found in [6:209-215]. Assump-
tion 3 implies that the mass in the linear momentum equation and the inertia dyad will not vary with
time and may therefore be regarded as constants.

Application of Newton’s Second Law to the aircraft indicates that the time rate of change of

linear momentum is proportional to the sum of the externally applied forces.

SR

In an analogous fashion, the inertial time rate of change of the angular momentum is propor-

tional to the sum of the applied moments about the center of mass.

(D.7)

Exext =

&[5

Note that Newton’s Laws must be applied in an inertial reference frame, The aircraft Body
axis system in general will be rotating and accelerating relative to the earth and therefore does not
quaiify as an inertial frame of reference. For this reason, it is necessary to form the stated time deriva-
tives in an equation which relates the aircraft frame of reference to one which is inertial. As stated in
Assumption 2 the earth will be considered to be an inertial frame. The time rate of change of the linear

momentum in the Body axis system is then [6:211):

i
II
]|
+
e
N
i

(D.8)

%% == {ﬁi + v] + wk + (QU-RV)1i + (RU-P¥)] + (PV—QU)k} (D9)
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And equating equation (D.9) to the sum of the externally applied forces yields:

M (D.10)

EF__, = B {<h+Qv—Rv>i + (V+RU-PW)j + (w+PV-QU)k }

The time rate of change of the angular momentum in the Body axis system is given as

.

i _F.5 <8 (D.11)
at H+Q x
dcIl - Q)
- - - (D.12)
= + Q0 x1I -
dt -
The expression for the dot product of the inertia dyad can be expanded to give:
1-a = (PI__ - - 1
=3 T = Qlpy - RI_D4
(D.13)

+ ¢-PI__ +Ql__~-RI ) 1
yx T Upy - RIS

+ -— -_—
< Psz QIzy + RIzz)k

Applying Assumption 4 implies that I,; = 0 and that Iz = 0. Making these simplifying substitutions,

taking the time derivative and substituting back into equation (D.12) yields:

L[] .
-~

k (D.14)

.

= (PIxx - RIn)i + QIyy J + (--PIxz + RIzz)

o |Gy

+0Qx %Plxx - RIxz)i + QIYY J + (.'E’Ixz + RIzz)k}




ﬁ—‘

When the cross product is performed, the equation may be split into three separate scalar equations;

one equation for each of the coordinate directions.

dHx = _ - - 5\
St PI RI_, ~QPI_ +QR (I__ -1 ) (D.15)
dBY _ o1+ PPI__ + RPU__ - I - BRI (D.16)
dt yy xz b .o 4 zZ xz
dBz _ _ . _ (D.17)
d—_—t = Rlzz PIxz + PQ(Iyy Ixz) + QR Ixz

Equations (D.6) and (D.7) may now be expressed in their component form to issue the six aircraft

equations of motion in the aircraft Body axis.

LF, = (U + Q¥ - R (D.18)

LF, = 2 n; + RU - PW) (D.19)

LF, =" V + PV - QM (D.20)

CH = ;In - ;alxz - QPI__ + QR (I__ - Iyy’ (D.21)

LX = élyy + P°1__ + RP L S Rzlxz (D.22)
90




> Hz = RI - PIxz + PQ (Iyy - In) + QRIxz (D.23)

The forces and moments which are applied to the aircraft and are represented on the left hand
side of the above equations will be developed by the aerodynamic characteristics of the aircraft and the
thrust of the engine. Also included in the force equations will be the force exerted on the aircraft by
gravity.Since the gravitational vector is defined in the Earth Fixed reference frame it is necessary to
define a method by which the gravitational vector may be expressed in the Body frame. A transforma-
tion matrix may be defined in terms of the three Euler angles; W, 8, and ¢. W is defined as the aircraft
heading angle, 6 the pitch angle and ¢ the roll angle. The transformation matrix between the Earth
frame and the Body frame, called [BV], is rather cumbersome but since it will be needed at a later

point in the derivation it is defined now.

[cosy coso siny cos8 - sind ]
cosy sinf® sing siny sind sing cosf sing (D.24)
- siny cosg + cosy cosg
cosy singt cos¢ siny 81iné cosy coef cosg
| + sioy sing - cosy s8ing
o
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ﬁ

Transforming the gravity vector into the Body axis system by premultiplying by [BV] provides

the gravity {_-ce to be applied in each of the aircraft force equations:

mg = ~g (-5in6 1 + cusd sing j + cosd cose k) (D)

Since the investigations conducted in this thesis will be concerned with the aircraft in an equi-
librium state, the equations of motion are further simplified by setting all of the acceleration terms to

zero. The resulting equations are the equations which describe an aircraft in a state of equilibrium or

trim.

F, +F. - mgsind = & (QV - RD
A_ Tx (D.26)

FAy+FT + mg cos® sing = 2 (RU - PW)

Y (D27)
F, *+F, + mg cos® cosp = 2 (PY - QU (D.28)
z Z

N, =QrR «I__ ~-1I__ ) - QPI (D2
Ax zz vy %z (D.29)
"AY = P°I # PR (I__ - 1_> - R°I (D.30)

xX zzZ xz
)(Az = PQ (Iyy - In> + QRIxz (D31)
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The A subscripts indicate an aerodynamic force or moment. AT represents a force com-
pouent generated by the aircraft engine. It is assumed from this point forward that the thrust vector of
the engine is aligned with the Body X axis and that therefore the Z and Y components due to thrust are
zero.

Several steady state flight conditions can be described with these equations, [10,37-39]. For
rectilinear flight all of the angular rates are zero. In steady turning flight the heading angle changes at a
constant rate. The third steady condition is that of a steady, symmetrical pull-up which is characterized

by:

and the wings level or ¢ equal to zero. The studies conducted in this thesis are concerned with rec-
tilinear flight and so equations (D.26) - (D.31) may be further simplified into the form in which they are

applied in Chapter IV.

A, Ty (D.32)

FAY + mg cosS cosp = 0 (D.33)

FA + mg cosb cosp (D-34)
z

]
o

(D.35)
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Ay (D.36)

(D.37)

Derivation of Flight Path / Pit ngt tionshi

Because of the form chosen to model the aerodynamic forces and moments, equations (D.32)-
(D.34) contain not only trigonometric functions but are also nonlinear in @ and 5. For this reason
these equations may not be solved with conventional linear analysis techniques and will require some
other method cf solution. This technique will be developed in chapter IV. The technique will require,
at one point, a functional description of the aircraft pitch angle which holds the aircraft flight path
angle at zero. This function will now be derived

The flight path angle, y, will be defined as the angle, in a vertical plane, that the aircraft

velocity vector forms with the local horizontal. For many flight analyses where small angles are as-

sumed the relationship between the flight path angle and the pitch angle may be expressed as

y =6 - a (D.38)

In general however this relationship does not hold since the aircraft is allowed to take on sig-
nificant vaiues of roll angle. For this reason it is necessary to derive an expression for the pitch angle in
teims of a, B, and ¢ for y equal to zero. To begin the derivation, two sets of Euler angles are defined.

The first set

(D.39)

locate the aircraft Body axis with respect to the inertial Earth fixed frame. The second set




are used to specify the Wind axis relative to the Earth frame. Equation (D.40) indicates that a

(D.40)

(D.41)

(D.42)

specified heading has been selected and equation (D. 41) represents the flight path angle equal to zero

condition. An arbitrary rotation of the aircraft about its velocity vector is indicated by equation (D.42).

Equation (D.24) represented the transformation matrix between the Earth fixed frame and

the Body fixed frame. Since this matrix is an orthonormal matrix, [2,116] the following relationships

apply:

[cos8 cosg

cosf siny

-sind

tL1 "t = (13T

LVBl = [BV]T

sing sind cosy
- cosg siny

sing sind siny
+ cos¢ cosy

sing cosg

95

cos¢ sin® cosy
+ sing siny

caosgp sinS siny
- 8ing cosy

cosg cosd

(D.43)

(D.44)

(D.45)




Recognizing that the wind axis system is also a body fixed system and substituting the defined

Euler angles to the Wind axis into equation (D.45) yields

1 0 o
{vvl = 0 cos¢w —simpw (D.46)
0 si n¢w cos¢w

A transformation matrix may then be obtained from the Wind axis to the Body axis system in

terms of the defined set of six Euler angles. This matrix is obtained by postmultiplying equation (D.24)

by equation (D.46).

(BV] = [BV] X [VV] (D.47)

(D.48)

[ cos8 cosy cosg A cosd siny —simpw cosd siny

- s8inp cos¢w -sind cos¢w
sing sind cosy cos¢w (sing sind —simpw (sing sind
(BV] = - cosg siny siny + cosg cosy) siny + cosp cosy)
+ sinp sing + v i sze

cose w cos¢w sing co
cosyp s8iné cosy cos¢w (cosg¢ siné —sin¢w (cos¢ sind

+ -—
sing siny siny - sing cosy) sinw) fin¢
+ sing cos¢ cose cosy cos¢w
L w cosp cosd
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The transformation matrix between the Wind and Body axis systems may also be expressed in

terms of a and § as:

[cosa cosf? -cosa sing3 -sina
[BV] = sing cosg3 0 (D.49)
sina cosf3 -sina sinf? cosa J

Equating equation (D.48) with equation (D.49) provides the equations needed to obtain the

desired expression for 6. Setting the first column of each matrix equal to one another yields the three

equations
cos@ cosy = cosa cosf’
(D.50)
cosgp sind cosy + sing siny = sina coss (D.51)
sing cosy sind@ - cosp siny = sing (D.52)
Equation (D.51) is divided by sin(¢) and equation (D.52) by cos(¢) to produce
cosgp sina cosf?
sin® cosy + siny = —mM8Mm™
sing sing
—— 81n& cosy - siny = (D.54)
cosg cosg
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Adding equations (D.53) and (D.54) gives:

cosg sind cosy sing sinf cosy sina cosf3 8in?
+ = +
sing cose sing cose
2 2
cos ¢ sin ¢ sina cosf3 sing3
sin® cosy sing cosg + singp cosg = sing + cosgp

sinf cosy sina cosR? sinf3
sing cosg sing cosg

sinf8 cosy = sina cog? cosg + sinfB sing

Equation (D.50) provides the relationship that
cosa cosf?

cosy = cosd

which can thea be substituted into equation (D.58) to provide

sind

cosa cog3 = sina cos’ cosp + sin? sing
cosd
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(D.56)

(b.57H

(D.58)
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(D.60)




The desired pitch angle, to hold the flight path angle equal to zero, in terms of a, 8, and ¢ is then

-1 Tans?
g = Tan { Tana cosg + o sing } (D.61)
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APPENDIX E AERODYNAMIC COEFFICIENTS

Normalized Control Derivatives

Roll LFL g = 300 Roll RFL q = 300
-6.00 —3.00 0.00 3.00 6 00 -6.00 ~3.00 0.00 3.00 6.00
24.00 T T——TTTT T 2o 2P //r T 24.00
21.00 F 21.0¢ 21.00 21.00
18.00 18.0¢ 18.00 18.00
15.00 15.0¢ 15.00 15.00
a ~
12.00 12.0t 12.00 / 12.00
= -
3.00 9.00 soo L ~ s.00
b —d
6.00 6.00 6.00 | \ 8.00
L ®
L >
3.00 3.00 3.00 3.00
0.00 0.00 0.00 A 1 - 1 L i L A jl 0.00
°% 6 00 6 .00 ~6.00 -3.00 0.00 3.00 6.00
Roll RP—{?T q = 300
Roll LHT q = 300 -600 -3.00 0.00 3.00 6.00
-6.00 -3.00 0.00 3.00 6.00 24.00 LI B B U
24.00 T — 24.0C
21.00
21.00 21.0¢C
18.00
18.00 18.0¢
15.00
15.00 15.0C
12.00
12.00 12.0C
9.00
§.00 9.00 a
6.00
6.00 6.00
3.00 : )
o o A
0.00 1 I | ) I i o.c
.00 0.00 —800 -3.00 0.00 3.00 6.00
-6.00 -3.00 0.00 3.00 6.00
B Figure 33 Normalized Roll Derivatives
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Roll RLEF q 300
Roll LLEF g = 300
-600 —3.00 0.00 3.00 6.CO
—6.00 -3.00 0.00 3.00 6.00 24.00
24.00 T T 24.00
21.00
21.00 21.00
18.00
18.00 18.00
15.00
15.00 15.03
a
12.00
12.00 12.00
3.00
9.00 /0'04 9.00
A
00 6.00
6.00 < 6.00
o0
o) 3.00
3.00 o® 3.00
) Q.00 1 i 1 0.00
0.00 e i) 0.00 —-6.00 -3.00 ©.00 3.00 6.00
~6.00 -3.00 0.00 3.00 6.00
Roll Rudder q = 300
-6.00 ~3.00 0.00 3.00 6.00
24.00 . 24.00
- _]
- -
21.00 21.00
—0.24 —0.24 —~—m
1800 | - 18.0
° E— -o0.18 -0.16 ——3 '%:%°
15.00 F —-0.08 —0.08 ——= 15.00
0.00 0.00 —
12.00 & - 12.00
- =
—— 0.08 0.08 ——
9.00 = 9.00
0.16 0.16 |
L -
8.00 |- - 8.00
0.24 0.24 =
=
3.00 | < 3.00
= 0.32 0.32 =
0.00 1 1 1 11 11 1 L 1 0.00
2600 -3.00 0.00 3.00 8.00

Figure 34 I{ormalized Roll Derivatives
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NCRFL (g=3C0) Normal LFL g=300
—-6.00 . . 6.CO —-86.00 -3.00

24.00 24.00 24.00
21.00 21.00 21.00
18.00 18.00 18.00
15 00 15.00 15.00

12.5C 12.00 12.00

a

3.00 9.00 9 00

6 00 €.00 6.00

300 3.00 3.00

0.00 0.00

~6.00 6.00 0.00 .%o
Normal LHT gq=300 Normaol RHT q=300
—6.00 -3.00 0.00 6.00 2405 200 -3.00 0.00 3.00 6.00
14.00 24.00 .00 24.00
21.00 21.00 21.00 21.00
8.00 18.00 18.00 18.00
5.00 15.00 i5.00 15.00
2.00 12.00 12.00 12.00
a
9 00 9.00 9.00 9 00
6.00 6.00 6.00 6.00
3.00 3.00 3.00 300
- /
0.00 L

. 0. 0.00

009 . 50 _ ) 5000 -8.00 -3.00 0.00 3.00 6.00

Figure 35 Normalized Control Derivatives
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—8.00
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18.00

15.00

12.00

9.00
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3.00

0.00

24.00

21.00

18.00
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12.00¢g

9.00

6.00

3.00

—-6.00

-3.00

—6.00

24.00

21.00

18.00

15.00

12.00

9.00

6.00

3.00

0.00

—-6.00

0.00

Normai
-3.00

24 .00

21.00

18.00

15.00

12.00

9.00

6.00

3.00

.00

.00

00

.00

12.C0

9 CC

6.00

3 00

0.00

Normat
—6.00 -3.00 €. 00
7T l/l 24
B f=)
S 2
=
|
<o
=}
>
[=] 18
1
—-6.00 6.00
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J

21.00

18.00

15.00

12.00
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3.00
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Figure 36 Normalized Control Derivatives
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Pitch LFL q Pitch RFL q
-6.00 —-3.00 0.00 6.00 ~6.00 -3.00 0.0 o)
24 00 24.00 24.00 ° 024.00
21.00 — 21.00 21.00 21.00
18.00 -1 18.00 18.00 18.00
._{
-

15 00 15.00 15.00 15.00
12 00 12.00 € 1200 12 00
3.00 - 9.00 9.00 9 00
€.00 8.00 6.00 & 00
3.00 3.00 3.00 300
0. 00 0.00 0.00 0.00
~6.00 6.00 ~6.00 6.00

Pitech LHT g = 300 Pitch RiiT q = 300
—6.00 -3.00 0.00 3.00 6.00 -6.00 -3.00 0 00 3.00 6.00
24.00 T " 7 ) I ,J T 24.00 24 .00 T = —rT 24.00
R 3 3 3 T R 21.00
4 d 1.
21 00 hoc puc & = 21.00 21.00
] ] ! |
| | ) \ 1
=] o = =)
18.00 ' 1 l l 18.00 18.00 = 2 2 18.00
g8 (8 ‘ \ \
(e o
15.00 < 7 ] 13.00 1%.00 - 1s.00
p \ \ ' .
i a 3 4 7
12 00 © - - 12.00 12 00 < 1200
| & | R - -
2|29 4 -
- t
— o} | y
9.00 9 O 9.00 S & S — 9 0O
- ] 2| 38|
o~
6§00 I~ 2 3 = ~ |- s8oc° 6.00 \ ) \ — s6.00
o (= _.
= ? T ? 1 i
- ] Sl ls ]
3.00 P~ -1 3.00 3.00 ~ & S - 3.00
-
| : LLLLLLLL
000 A L L 'l I\ 'l L 1 L 1 0.00 0.00 1 1 L 1 L 1 " L 0 00
-6.00 -3.00 0.00 3.00 6.00 ~6.00 3.00 0.00 3.00 6 00

B B

Figure 37 Normalized Pitch Derivatives
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Figure 38 Normalized Pitch Derivatives
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-6.00 2
24 00 —— 24.00
21.00 21.00
18.00 18.00
15 GO 15.00
1200 12.00
3 00 9.00
6 00 6.00
3co 3 00
fele} 0 00
~6.00 -3.00 000 6 QO
Side RHT q = 330
Side LHT q = 2300 -6 00 -3.00 0 00 3 co & 00
24 00 ) 24.00
-6.00 -3.00 0.00 3.00 6.00 |
24 00 LA P ZSus SR S SR T T 24.00 _J
— i
- / 21.00 o= 21T
2100 K 4 21.00 ~
‘\% —
o
L s = 18.00 i 18,07
18.00 / - 18.00 ~
~ ) i -
= - ~ 15.00 ~ '5.00
; .
1500 7 / ] 15.00 -
= 1
= K — 12 00 t :J 12.20
1200 o A 1200 1
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9 00 o j 9 00 \ > .
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- / — 6.00 R \ \\ ] & 00
6 00 6 00 - \
£ “ Lo N
=% - \
/ - 300 > . - 3ce
\ \,
3 00 < 300 - :
- — \
/ _ cooco b1 LN 4 w1 N L o0
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Figure 39 Normalized Side Derivatives
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[ele}
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24 00 ’
21 00
18 00
1% 00
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Figure 40 Normalized Side Derivatives
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Yaw LFL g=3C0O

-6 00 -3.00 0.00 3.00 6 co
21.00 _onk J 21.00
18.00 18.00
15.00 15.00
12.00 12.00

9.00 9.00
6.00 6.00
3.00 300
0.00 — 1! 0.00
~6.00 -3.00 0.00 3.00 6.00
Yaw LHT g=300
—6.00 ~3.00 0.00 3.00 8.00
24.00 - 24.00
21 00 21.00
18.00 18.00
15 00 15.00
x
12.00 12.00
9.00 9.00
6.00 6.00
3.00 300
0.00 0 co
~8.00 -3.00 0.00 300 6.00

B

21 00
18 00
15.00
12.00
9.00
6.00
3.00
P05 300 0.00 300 6 00
B
Yaw RHT q=300
2a09 800 —3.00 0.00 3.00 890 . oo
2100 21.c0
18.00 18.c0
15.00 15.00
12.00 12.00
9 00
6 00
300
] 0 00
o

Figure 41 Normalized Yaw Derivatives
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Yaw LLEF g=3CO Yaw RLEF <c=2320C0
—6.00 -3.00 0.00 300 5.00 -6.00 -3.00 0.00 300 £ro
24 00 24.00 24 00
21.00 21.00 21 00
18.00 18.00 18.00
15.00 15.00 15.00
a
12.00 12.00 12.00
9.00 9.00
6.00 6 00
3.00 3.750
0.00 0.00
~6.00

B

Yaow Rudder g=300

-6.00 ~3.00 0.00 3.00 6.00
24.00 Y . : 24.00

-0.96 —/ -“
21.00 //——————= 21.00
= 007 — -0.97 —m1

]

18.00 -1 18.00

12.00

FL-//
L
2 1s.00 E/ ’ - 1s.00
N
N

9.00 \ - 9.00
- -0.97 ~0.97 I
- .

800 fF————nu —=1 8.00
—— -0.97 -0.97 —

300 F 3.00
ME -0.96 -0.96 —]

0.00 Iy 1 1 I T T 1T [ i 1 - 0.00

~6.00 -3.00 0.00 3.00 6.00

B

Figure 42 Normalized Yaw Derivatives
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Coutours of Aerodynamic Coefficients
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Figure 43 Longitudinal Coefficients
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Contours of Aerodynamic Coefficients (continued)
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APPENDIX F

The three codes used to perform the investigations of equilibrium regions are contained in this

appendix. Autrima.for represents Case A, Autrimb.for represents Case B and Autrimc.for represents

Case C. A flow chart is presented in Chapter IV which provides a schematic description of the opera-

tions of the codes.

Autrimb.for

TRIMHb.FOR

6an6ooo6

17 Oct 89 SMZ

implicit real*8 (a-h,0-2)

n

parameter ( gw = 19000, cg =27.208 bail=63.7)
parameter (span = 29.0,chord w 10.937,wing= 300, vtail m 54.75)
parametar (ak = 10000)
parametar (lemin «-2 leasaze 25, ifimin = - 20, fimax= 20)
parameter (rfimins-20,rflmaxw 20, lhtmin =-25, [btmax=25)
pannaz(rhm- -25, rhumaxs 25)

in=-2.5,c 25,pim3.1415927)
panm (nl = 4 meize = 4)

real®8 o(4,4).deitn(4),5(4) zec(6)
real*8 i

ranmin,canmax,rud,lle.rie, o}, e, rbe
real®8 aipha, beta,ra,rh,rd, min( 4), max( 4), deimn
real®8 iaz(20.6).iba( 20.6).ida(20,6),coetz(20,6),nolncz(6)
real®8 ialle(20.6),iblle(20,6), idlie( 20,6), coeflle(20.6)
real®8 iacle(20,6).ibrie(20,6),idrte(20,6),coelrie( 20.6)
read®8 ianud(20,6),ibrud(20,6),idrud(20,6).coefrud(20.6)
real*8 iarf)(20,6),bef)( 20,6),idr()(20,6),coefr(20.6)

€).0frud(6),afrfi(6),00)(6), cLlle(6)

reai®8 nfrte(6),000t(6),clrie(6),cla(6).clrud(6),crli(6)
real*8 ofii(6),clrbu(6),clibu(€),ch(6), raip.pbil, philr
real*8 crie(6),ca( 6),orud(6), ) €).clo(6).sbet,tbet,chet
real*8 cifi(6),cri(6).clbe(6)vet(6).cin.sthrt, thtad)
real*8 fuy,
resi®8 inda,indb,indd,phi2r ecr

[

<
chacacter*20 trisa,notriss,phicon,drag deleil suth

c

<
extarnal O
extarnal poly

The purpose of this prograe is to search for trim solutions for
the P-16 given a rudder failure snd the angle of deflection at which
thin surface is locked into & "hardover” [silure. Coeficients (oc the
computation of serodynamic (orces must be supplied se data Giles
which are called into subroutines in this progrsa. This p

-mmmamwmmww
boids. The LEFS are scheduled in this program s a function of A O.A-
Wings level fligit is not enforced snd 50 in genersl the roll sngle will

AernNnnaaanaana
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a

Cao600n600a

m:mmm&ﬁﬂﬂm#-ﬂdum
‘I'tmpcogmuudnm and the two hort | tails
p by to achs o trimD sohuti
The control suefaces in the deka vector are numbered as
foliows:
1 Port Plaperca
2 Stardoard Flaperon
3. Port Horizontal Tadd
4 Starbosrd Horizontal Tall

This version of the program will writs the specified information to data
files which can be evaluated in either SURFER or GRAPHER.

write(4.°)
write{6,%)’
write(6,*)
write(6°) "

write(4,°) "Please enter the specified rudder defl in degs:’
read($,*) rud

write(4°) "

write(6.°) 'H-' anter the min alpbs in degs: '

AUTRIMB'

6,*) "Plesse enter the max alpha in degs: *
read($,?) sipmax
write(4,%) **
write(6,°) ‘Please anter the index for alpba: *
read($,*) inda
write(4.°) '’
write(6,*) 'Please enter the min beta in degs: *
rend(5,*) betmin
write(4°) °*
write(6,°) Plesse enter the max beca in degs: '
read(5,*) betmax
writa(6.°) *°
write(6,°) Please enter the index (oc beta: '
read(S,*) indb
write(6°)"*
write(4°) **
writa(6,°) ' The curvently selected cangss for trim iewestigation
x are g9 follows:’
writa(6*) "’
write(6,*) ‘Failed surface: Rudder’

wrke(6*) "’

writa(4*)’

write(6,*) "Enter » flename for trim solutions:'
resd(5,5000) trim
open(12.fle=trim status = ‘oew’)




4

<
[
<

<

¢
<
<
<

[

oaoo0onan

aaoaon

write(6,*) ‘Enter a filename for Phi contours:’
read($,5000) phicon
open(11,file= phicon,status="new’)

write(6,*) ‘Enter s (lename for Drag coef contours:’
read(5,5000) drag
open(10,file=drag status = ‘new”)

write(4,*) Eater a filename for Mean aileron contours:'
read(5,5000) detail
open(9,filo= delailstatue ="new’)

write(6,*) Enter a filename for control autbority contours:’
cead(5,5000) auth
open(8 filewauth,status = 'new’)

write(6°) "
write(6°) 'Opening file’ Lrim

Initialize the min and max comparison vectors

min(1) = fimin

min(2) = rlmin
min(3) = htmin
min(4) = rhtmin

max(1) = fimax
max(2) = rlimax
max(3) = bimax
wax(4) = rhimex

initiskise the canges
raip =((alpmax-aipmin)finds) + 1
b =((betman-t _ nin)/indb) + 1

z=0
t=0

call dynpess(mach,qber)
write(6,*) The vaiue of the dynamic pressurs is:', gbar

for the focces

Call in the polynomial preds
and moments,

sipr = aipha* (p/199)
betr = beta® (180)

Specify the Fiight Path angle equai to 2ero
which implies first estisnets of theta is siphs

thir = sipr

saipha = sin(alpr)
caiphe = coa(alpr)
sbeta = sin(betr)

oo

gnn

anoo0oneao00anan

cheta = cos(betr)
ctht = cos(thtr)

taip = tan(alpr)
tbet » tan(betr)

Calculate the sero forces in the body z and x axis reapectively

faz = salpha®(-1°(cfz(2) +cflie(2) + cfrte(2)))
X+ calpha®(-1°(cfe(1) +cllle(1) + clrie(1)))

fax = calpha®(-1°(ctz(2) + ctie(2) + clrle(2)))
T - salpha®(-1*(ctz(1) + cflie(1) + cfrie(1)))

(ay = (ctz(3) + cle(3) + clrie(3) + cfrud(3))

Calculste (irst estimate of Phi from side force oq

[gw = tay/(-1°gwicidi)
if (gw.g2.1.0) thea

goto 600
eise if (fgw.it -1.0) theny
goto 600
ecisg
philr = asin(tgw)
endil

phi = cos(philr)
bt w cos(thir1)
stht w sin(thir1)
fix = gwostht - (xx
phil = philr®(180/pi)

Conatruct the lefthand side of the linear probiem with known
force and moment data.

the following (ores and by row

5(1) = -1°gw cpbi®cis - tax
do70(= L3

m=(+3

n=lel

b(n) = -1°* (cfz(m) + ctle(m) + clrie(m) + cfrud(m))
20 .

(4
(4
J
[
[

naa0a

[
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Assemble the A matrix to be used in the koear probiem.
This matrix is comapased of the coatrol derivatives of the
controls that will be used to effect & trim solution.

all m%muwwm

X

call na?(ngmmwm

4

ol uma(q:‘mmmmm

x cofri,crbe)
call bezeaid(qbar.aipbe, beta el i, il coellbe, nibt,
x cfib, clit)

¥(1,1) = -1°c(2)°saipha -1°c00(1)" caipba
12) = o(11)

5(1.3) = -1°cfibu(2) salpha -1°clibt(1)*calpha
A1) = a(13)

d0 8001w 1)

L IR >}
LLEED
»(n]) = ifi(m)
¥(0.2) = ctrfi(m)
#(n,)) = cfibt(m)
»(0,4) = cfrie(m)
continue

Soive the linear prodiem which has been set up.
call vd_solve(s,b.deita.al.nl.meize.meize)

Sum up side foroes due 10 control deflections

(ay = (c£2(3) + cfin(3) + ctrie(3) + cfrud(3))
Cay = Cay + (doka(1) * LB(3))




n
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fay = (ay + (delta(2) * Lrf)(3))
fay = fay + (deita(3) * cflbn(3))
fay = {ay + (deita(4) * crht(3))

Sum up Normal forces due to control deflections

fazt = salpha®(-1%(cfa(2) + cllie(2) + cfrie(2)))
1+ calpha®(-1%(ctz(1) +cflie(1) +cfrie(1)))

8(L1) = -1°c1(2)*saipha - 1°cfi(1) calpha
2(12) = -1°cfrf1(2) saipha - 1*cfrfi(1)*calphs
8(1,3) = -1°cflbt(2)*saipha -1°cihe(1)*caipba
a(14) = -1°cfrbit(2)*salpba -1°cfrhe(1)*calpha

fazt = {azt + (delta(l) ® a(L1))
fazt = fazt + (deita(2) * 3(1.2))
fazt = faz + (deita(3) * 3(13))
fazt = a2t + (deita(4) * &(L4))

Adjust Pitch angle (or the new roil angle

tscadj wtalp®(-1faztigw) + (thet/calpha)®(-1°(ay/gw)
if (thtadjgt. 1.0) then
goto 600
eise if (tbtadjit-10) then
goto 600
else
thu2=asin(thtadj)
endil

cht = cos(thir2)

Adjust Roll angle [or new theta and control deflections

{gw = Lay/(-1°gwocibt)

it (fgw.g2. 1L0) then
goto 600

else if (fgw.ie-1.0) then
goto 600

ciss
phiZr = ssin((gw)
endil

err] = sqe1((philr - pbiZx)**2)
err2 = sqri((thert - ther2)**2)
write(6,"} “The ecvor is2’.erx

Determine if new phi sngle is within
.0001 redians of first approximat

if (2.51.21) then
goto 525

elss i{errLge 0001) then
phile = phi2r
thtr} » thu2
twzel

woto 50

elos {orr2g_0001) then
philr = phizx
thir? = thu2
=g+l

goto 58

endif

Determine f the computed solution violates constraints oo
control aurtacs deflection mits and write the data (o the
apropriats la.

do 40 l=14
i\ dolta(l)it.min()) .or. deka(T).gt.max(l)) then
oo 510

wrke(4?)
write(4*) The value of siphe i *.siphe
write(6.°) The value of beta is:  *.beta
write(*) The rudder deflection is: '.rud

write(
WRITE (6°) The vihun of the Roll angle is-',pbi2

114

write(6,°) "

WRITE (4°) ‘The vaiue of the Pitch Angie ia:',thets

write (6"

write(6,°) " A solution exists at this point'

write{6,*) TIISSITTIISISISETSIIISIITIsISISISISIsISSS’

write(6,°) 'LHTdeita(3)

write(4°) "'

write(6,*) RHT"deita(4)

write(6°) **

write(6,*) ‘SESSERREIITILSISTETIIIIsTssIsstIseeassssssss’

ana6aaaa066000n0a000006
»
-
~
&

deimn = (deita(1) + deita(2))/2

o0

cdt = crie(2) +c2(2) +crud(2) + cefi(2) +clle(2) +
x cif)(2) +crii(2) +ctbe(2)

¢ Cocoputs the solstion sres ss of this pass.

o

t=te]
sinaces = t*(inds’indd)

¢
¢ Caiculate remaining pitch and rofll suthority
call suthor( <00, cfrfl, efii, cfrbe, deita, peurn,cauth)

< Write output Lo (e for plotting in Grapber or Surfer

o

E.

13 continue
“e(&*)

o o 6 a

swesssse’
¢ weke(6”)'
¢ WRITE(6*)

RN A ARSI SRS EY S S R AR S W e

NO SOLUTION AT THIS POINT

010328

o 060waao

write(6.*)
(XYY R P ALY LR PR L P LR PR PR, )

¢ weite(4®)'  SOLUTION WILL NOT CONVERGE AT THIS
POINT
[ WRITE(4*)

esnssue’
[

noo

write(6°
write(6.°) * Steady stats it condition violsted”
write(4°) ‘ Selecting next sipha value’

)
slpba = oiphe + inda

IR - SUR
i

|




<

<

beta = bets + indb

200 continue

(4
<
4

100 continue

[

<
<

close(12)
close(11)
close(10)
close(9)
close(8)

write(4,*) "The deta search is complete.’
write(6,°) The total solution ares is:'sinarea

5000 Format(s20)

10000 Pormat(fS.2)

20000 Format(42x,110.7))
30000 Format(4(14.2))

40000 Pormat(S(f4.2))

50000 Format(4(1x112.4))
60000 Format(19.5,3(1x.09.5))

00606

o anaa

o na60o0

enonana

stop
end

DYNPRSS

subtoutine dynpres(mach.q)

The of this program is to determine dy

L ¢

besed 0n the specified Bight mach number snd skituds, 1t

is currenty “wired® to request a value for .

real* S mvelq
perametec (gamme= L4 rbo= 0017564t = 525)
pacameter (gc = 32.174,cw53.34)

8 = sqei(gamma’r*t*gc)

vel = mach® »

q = 5°cho*(vel**2)

write(6,*) "Please enter 2 value for q:'
read(5,%) q

retumn

end

charscuer * 1id(6)
data idl"1',2.'Y,'€,'S, €/

itw1
dag=2
sdew)
pitch = 4
rollm$
ywaé

column identiflers
ilcoe = |

ialphe = 2
beta » 3

delta = 4
izcf w$§

old = 'fixz’
ext » 'dat’
do 100im1,6
name = old//id(i)/ext
open(14,file= name, status » 'old")
read( 14 10000) control
¢ write(4°®) control
read(14,10000) force
¢ write(6°) force
read(14,°) raqe
¢ write(4°) raqr
read(14°*) nofn

do 15 jm160
read(14,% end =25, err=35) (s(k1).k1=1.5)
islpha)
iba(),i) = s{ibeta)
nolnc(i) = s(ifcns)
write(6,20000) iax(hi).ibz(i)iidz(hi),coetz(),i)
contnue

close(14)
continue

see”

¢ write(6*) Finished in Faer'
10000 Format(2x210)
20000 Format(4(2x110.7))
return
end

PFIXLLE

on6nno

subcoutine flle(ialle,bile,idlle,coallie,nfle)
hwnzu#mm

integer

real*8 4(5), raqe.olie(6)

real®8 ialle(20,6).ib8e(20,6), idille( 20,6), coeflle( 20,6)
character * 10 (oroe,control

character * 11 nsme

chacacter * 6 old

character* 4 emt

character * 1 id(6)

data id1,2°,"3,'4,'8",'¢/

o

it =1

dag=2
side » 3
pch = 4
roll m §
yw=§é

column identifiers

a0 a

ifons = 1
islphs @ 2
ibeta = 3
idelta » 4
iloct ™ §

old = ‘falle’
ot = ' dat’
do 108 (=16
namse = old/Ad(Ty//emt
open( 14 file=neme status=old")
resd(14,10000) control
¢ write(4°) cootrol
road(14,10000) force
¢ write(6°) loroe
read(14°) raqr
¢ write(6*) ragr
rend(14,*) nofn

do 15 jm 1,60
read(14° endw 25,errm35) (k1) k1= L5)




ialle(j,i) = s(ialpha)
idlle(,i) = (ideita)
nMi) = o(ilcns)
continue

close(14)
write(4,°) Reading:' name

write(6,*) "Finished in Fixiie’

10000 Format(2x210)

a4 n6naan

a

a6annoa

retum
end

FIXRLE

subroutine fixrle(iarte,ibrie.idrie,coeftle.nfrie)

integer alp, bet, del, comb, noln

integer kit drag side, pitch roll yaw

real®8 &(S), raqr,nirie(6)

reai®8 iarie(20,6),ibrie( 20,6),idrie{ 20.6),coefrie( 20,6)
charactar * 10 {orce,control

character * 11 name

character * 6 old

character* 4ext

charscter * 1id(6)

data id'1','2',3','4",'S",'6"/

lify = 1
dng = 2
side = 3
picb = 4
roll = §
yow=6

column identifiers

ifcns w 1
isipha = 2
ibeta = 3
ideits = 4
idec{ = §

old = fixxrie’

ot = "dat’

do 100i= 1,6
name = old/Ad(i)/ext
open(14,file =name status ="0id")
read{14,10000) control
write(4,*) control
read(14,10000) force
write(4,*) lorce
resd(14.°) raqe
write(6,°) raqr
resd(14,%) nolis

do 15 jm 1,60
resd(14,° end= 25 erv=3$) (s(k1)k1=1$)
isrte(i) = a(inipha)

FIXRUD
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subroutine fixrud(iarud.ibrud.idrud,coefrud.nfrud)

integer alp, bet, del, comb, nofn

integer lit.drag side.pitch.rollysw

real®8 &(5), rage,nfrud(6)

real*8 iatud(20.6),ibrud(20.6),idrud(20,6), coefrud(20,6)
character * 10 force,control

character * 11 name

character * 6 old

charscter * 4 ext

character ¢ 1id(6)

data id"1,72,'3,'4','S",'6"/

lift=1
drag w 2
side = 3
pitch = 4
ol =$
yaw = 6

column identifiers

ifons = 1
ialpha = 2
ibeta = 3
idelts = 4
irudef = §

old = ‘forud’

o = ' dat’

do i00imié
name = old//id{iV/ext
open( 14 filemname, status »"old")
read(14,10000) control

¢ write(4°®) control

read(14,10000) force

¢ write(4,°*) force

resd(14°) raqe

¢ write(&°) ogr

resd(14.,%) nofn

do 15 jm1.60
read{14,° end =25 err= 35) (s(k1),k1=1,5)
isrud(1)) = s(iaipba)
ibrud(j,i) = s(ibeta)
idrud()i) = s(ideita)
eod'n.d(j,l) = y(irudel)
nfrud(i) = s(fcos)
continue

3 close(14)
35 write(4,*) Reading:’,name
close(14)

¢ write(6,) Finiehed in Frerud’

10000  Format(2x210)

returm
end

FIXRFL

subroutine farfi(iartl,ibefl,idef), coatrfl ofrfl)
intepar aip, bet, del, comb, noln

ceal®8 &(5), reqr.ofr(6)

real®8 inrf)(20,6),rfl(20,6),idct1(20.6),coelri( 20.6)
character * 10 force,control

charactar * 11 name

charactar * 6 old

charactar * 4emt

character * 1id(6)

dats id"1',72,3",'€,'S",'€/

litwm1

drag=2
tdg =)
pitch = 4
rol=§
yow = §




15
pal
35

1oo

column identifiers

ifcns = 1
ialpha = 2
ibetam 3
ideita = 4
irfic{ = §

old = Yizr@l

ext = "dat’

do 100 iw1.6
name = old//id(i}/en.
oper 14 lile=name,state = 'old7)
read(14,10000) control
write(6,*) coatrol
read(14,10000) foccs
write(4,*) force

do 15 j=1,60
read(14,%,end =25 errm35) (s(k1),k1=1,5)
iarf1(ii) = (ialpba)
ibefi() = Kibeta)
idefi(i) = s(ideha)
coe(rfi(j,i) = s(irflch)
nfrii(i) = s(ifcns)
coatinus
close(14)
write(6,°) Reading:’,name
close(14)
continue
write(6,*) Finisbed ic Pt

wtm Format(2x,210)

o006 a

retuen
end

FIXLFL

subroutine (odfi(ialfl,ibif), idifl, coefift,nlMT)
integer aip, bet, del, comb, noln

integer lift.drag,side, pi

real®8 5(5), raqr.nfii(6)

eal®8 ialf1(20,6),ibifi(20,6),idt)( 20.6), coefif}( 20.6)
character * 10 force, control

charscter * 11 name

character * 6 oid

charscter * 4 ext

character * 1id(6)

dats id1,2,'3",'4,'S",'6"/

lift =
drag = 2
sije = 3
pitch = 4
oll=$
yweé

17

_ﬁ

do 15 jm 1,60
read(14°,.end=25.erv=35) (s(k1).k1w,$)
#i0(i) = s(iaiphs)
BN = s(ibeta)

I (j,i) = s(ideita)
coeflfl(j,i) = s(ilfef)
nfif(i) = o(ifcns)
15 continue
25 close(l4)
35 write(6°) Reading:’,name
close(14)
.00 continue
write(4,*) Finisbed in Fiifl®
mm Formst(2x,210)

return
end

FIXRHT

canaooon

subcoutine fixrbi(iarht,ibebit,idebe, coefrbe,nfrbt)
integer aip, bet, del, comb, nofn

integer lift dragside, pitch,roil yew

real®8 5(5), raqr.nfrhi(6)

real®8 iarht(20,6),ibrht( 20,6),idrbi(20.6),coelrhe(20,6)
character * 10 (orce,control

character ® 11 name

character ® 6 old

character ® 4 et

character ¢ 1 id(6)

data idF1,2,°Y,'4,'8'67

litwt

dragm 2
side = 3
pitch = 4
coll = §
yaw = 6

column identifiers

o a

4015 jm1.60
md(w.-u-zs.-;r-ss) (s(k1),k1=15)

¢ write(4*) ‘Finished in Fixrt’
10000 Formet(2x.a10)

return
ond

o




FIXLHT

o0 o0a

subroutine (ixiht(iatht,ibiht,idlht,coefibt,nflbt)
integer alp, bet, del, comb, nofn

integer L, drag side, pitch,roll.ysw

real®8 4(5), raqe,nllb(6)

real®8 iaiht(20,6),ibibt(20,6),idIbt(20,6),coeflbt(20,6)
character * 10 focoe,control

character ® 11 name

character * 6 oid

character ¢ 4 ext

charscter ® 1id(6)

date idPVP V806

lik m 1

drag =2
ude =)
pitch = 4
ol =$
yow=§

column identifiers

a o

ifcns = |
ialpha = 2
ibeta = 3
ideita m 4
iibtcf{ = §

old = Tudht’
et = ' dat’
do 100im 16
name » old//id(i)/ext
open(14,fle s name.status='old")
read(14,10000) cootrot
¢ write(4*) control
read(14,10000) (ocos
¢ write(4°) force
read(14,°) reqr
¢ write(4°) raqr
read(14,*) nofn

do 15 jm 1,60
read(14°.end=25,crv=35) (s(k1),k1=1,5)
ialh(4i) = o(iniphe)
ibibe(Li) = s(ibeta)
idibe(j,i) = s(idekta)
coefibt(j.i) = s(ilhwcl)
nfthi(i) = s(ifcns)

15 continue

25 close(14)

35 write(6') Reading’ narve
close(14)

wo contioue

write(4,*) Finished in Fudin'

umo Format(22,210)

retum
end

LEF

a6an0a6aa0

s {Be.nfle inrte Rorle idr} frte.nlrie,cle cri
<
¢ The purposs of this program is to determine the Leading Edge

¢ Flap setting bused LEF scheduling. From thess settings the respective

¢ [orcs snd moment dets are calculated for use in the left hand side of
¢  the linear equation.
[
upi&r-l'l (s-b0~3)
resl * 8 machLalpba.e.cie,clle(6),crie(6), beta.x(3)
cesl®8 inlle(20,6),ible(20,6),idlie( 20,6),coele( 20.6)
cead®8 inrte( 20,6),ibrie( 20,6),idrie( 20.6),coslrie(20,6)
resi®8 afe(6).nfrie(6),func.cfle(6), clrie(§)
parametar ( gw = 19000, cg =27.208, bisil=61.7)
p (wpan =29.0.chord = 10.937,wing= 0% veail = $4.75)
cmernal O

118

¢ compute leading edge flap deflection in degrees
c

if (alpbale.-2) then
lie = .2
dew.2

clseif (alpba.ge.2S) then
e = 25
e w 2§

cise
lie = L3164%aipha +17
ric = lie

endif

a

imilalize xvector for evaluatie 2 5 ynomial

x(1) = aipha
X(2) = bets
x(3) = lie

3

i predi quati 10 obuain £

do 100iw 16
clle(i) = 0.0
do 200§ = Lofe()
func = ¥
clie(i) = clle(i) + eoeme(j.n)‘mnc
200 continue
100 continue

and returm.

cllie(5) = cle(3)* qburwinrg* spen
cllle(6) = cle(6)* qbar*wing® span

clrie(1) = crie(1)°qbar*wing
clrie(2) = crie(2)*qbar*wing
cfrie(3) = crie(3)* qhar*wing
clrie(4) » crie(4)°qbar®wing® chord
cfrie($) = crie(5)*qbar*wing®span
cfrie(6) = crie(6)* ghar*wing® span

retum
end

ZERO

anao0oaae6

subrouting sero(qbec.aipha, dets,laz ibe.idx, coely, solncz, ofz.cx)
The purposs of this subprogras is (o calculste the values of

mlmdmwuhmwmm
these values ace placed in the left band b matrix

implicit rest®8 (a-b,0-8)

roal®8 ias(20.6).Jbu(20,6)idx(28,€). coufz( 20, 6).00fncx(€)
real®8 aipbe, beta,x(3),ca(6),cfx(6)

pecemeter ( gw = 19000, cg =27.208 bl =63.7)

(spen =29.0.chord= 10.937,wing = 300 viaid = 54.75)

66600

cuoronl 8
initislize X vector for evalusting polynomial
%(1) = siphe

X2) = beta
x(3) = &0

o




¢ evaluate predictor equations to obtain coeficients
[
do 100im 16
cz(i) = &0
do 200 j w 1.nofnca(i)
func = (3(j,x jaz.id2.idz.i)
c2(i) = a(i) + coefy(ji)*func
200  continue
100 coatinue

[+
¢ Caiculate forces and moments and retum.

o

¢ write(4.°) 'the value of the drag coel is’, c2(2)
cfz(1) = ca(1)qbarwing
ct2(2) = cu(2)*qbac*wing
cfz(3) = ca(3)° qbar*wing
ofz(4) = c2(4)*qoar*wing*cbord
cfz(5) = c2(5)° qbacswing* spen
cfz(6) = (6} qbar*wing*span
20000 Formay(4(2x.10.TY)
returm
end

FAILED

6 o0600n0n

values (or the failed control surface (oc use in the left band
">° matrix, The rudder is currently programmed

implicit ceal*8 (a-b,0-7)

parameter ( gw = 19000, cg = 27.208, hiail=63.7)

parameter (span =29.0,chord=10.937,winge 300,viail=$4.75)
real®8 iarud(20,6),ibrud(20,6),idrud(20.6),coelrud(20.6)
:;:ﬂ ‘*Pﬁlo beta,x(3),crud(6),ctrud(6),ntrud(6),rud

initialize X vector for evaluating polynoaial
x(1) » slphe

x(2) = beta
x(3) = rud

aa6aaon

n

o

" preds quat 10 obtgin Liri

do 100i=16
crud(i) = 0.0

func = O(j.xiarud,ibrud,idrud.i)
crud(i) = crud(i) + coefrud(ji)*fuoc
200  continue

¢ Calcuiste (orces and moments snd return.

cfrud(1) = crud(1)°gber*wing
ctrud(2) = crud(2)*ghac wing
cfrud(3) = crud(3)*qbar*wing
cfrud(4) = crud(4)° qhar*wing® cbord

FLAPER

aan0aanaen

subroutine flsper(qbar.aipha, beta.iarfl,ibefl,idrfl, coefrfl,
x orfl,cfrfl.crff)

The purposs of this program is (o calculate the cootrol
derivatives for the right and left flaperon given s values
for g sipha, beta.

ANnoNnn6aao

implicit ceal®8 (a-b,0-8)

subcoutine failed{qber,alpbs, bets, rud,iarud ibrud.idrud,coefrud,
nfrud,cfrud,crud)

The purposs of this program is to determine the {orce and moment

119

parameter ( gw = 19000, cg = 27.208, brail=43.7)

parameter (span =29.0,chord= 10.937, mng= 300, via = $4.75)
real*8 iarf)( 20,6).ibef)( 20,6).idrfl( 20.6), coelefi( 20,6)

reai®8 aipha, beta x(3},cr(1(6),cLrfl(6),nLrf1(6), A1(6)

reai*8 cifi(6)

do 100im1 6
crfi(i) = coefrfi(2i)*alpha + coefrfi(.i)*beta
x + coefrfi(1,i)

100 continue

<
<
<

66 600a60an

a

o

ofrfi(1) » crfi(1)*qbar*wing
o[ri(2) ® crfi(2)*qbar* waig
ofrfl(3) = crfi(3)*qbar*wing
frQl(4) = cr(}(4)*qgber*wing* chord
rf)(5) = crf)(5)°qbec*wing®spen
dIrf)(6) = crf(6)* qberwing®span

HRZTAL

subroutine heatail(qber, aipha, beta,iarht, ibrbe,idetit, coolrhe,
x nrht,cfrist crivt)

implicit real*8 (a-b,0-7)

parameter ( gw = 19000, cg =27.208, hisil = 63.7)

parameter (span =29.0,chordm 10937 winge 300,viai = 54.75)
real*8 iartt(20,6),ibett( 20.6), idrbt(20.6),coelrbi(20.6)

real*8 alphe, beta,criit(6),cirtu(€),nlriw(6),cfibt(6)

real*8 ctu(6)

do 100im1,6
ertu(i) = coefrte(2i)*sipha +
x + coefriw( i)

fre(1,i)* beta

100 continue

¢
¢
c
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rti(1) = crb(1)*qber*wing
Arby(2) = crin(2)° qbar*wing
cbu(3) = crb(3)*qberwing

m

real®8 function O(Lxiaibid_fon)
implicit real*8 (a-h,0-3)
ceal*8 x(3)

el 8 1(20,6),3 20,6)00 24 9).00_\c"a 6)

if (. §1.100) wrica(6,*) *** ERR - undeciared function for j=" j
aipha = x(1)
beta = x(2)
deks = (3)
G-Mi-w fca),alphe
i(Ll lﬂ!).bﬂ)
z *poly(id(}l_fcn),deita)




real*8 function poly(nfnc.x)
implicit read*8 (s-h,0-1)
ceal*8 nine
This function returns vaiues of the family of polynomiais.

ninc gives the power to raise X Lo,

na6o6ao

if(nfnc.eq.0) then
poly=10
clse
il (xeq.0.0) then
poly=0.0
eise
polymx**ninc
end if
end if
return
end

AUTHOR

a6 6nna

subroutine author(cfif,ofrfl. clihe cfrbt, deita,
x pauth,rauth)

a o

implicit resi*8 (»-h,0-1)

The purpose of this program ia to cakculate 2s a percentage
the pitch and roll controll suthority remaining after the A/C
bas been trimmed to achieve equilibrium.

0060 a0anao

parameter ( gw = 19000, cg =27.208, hlail=63.7)

pacameter (span =29.0,chordw 10.937 wing= 300,viail w54 75)
parameter (Amaxw 20, humax=25)

real*8 dmax1(4),dmax2(4),d1(4),d2(4), deiea(4)

real®8 cfi)(6), cfrf)(6),cfthe(6),clrb(6)

rmag = ¢
pmag = 0
rmanag = 0
pmxmag = 0

d1(1) m AI(4)* detta(1)

d1(2) = Arfi(4)*deha(2)
d1(3) = cfibe(4)* dekta(3)
d1(4) = drbi(4)* deita(4)

d2(1) = ifi(S)*deita(1)

d2(2) = cfrfi($)* deita(2)
d2(3) = Ihi(S)*deita(3)
42(4) = cirt(S)* deia(4)

dmax1(1) = <0(4)* Omax
dmaxi(2) = cfr)(4)* max
dmaxi(3) = cfibt(4)*burmax
dmaxl(4) = ctrin(4)*humax

dmax2(1) = cO(5)*Omex

do 100w )4
pmag = pmeg + (41(0)""2
rmag = rmag + (d2(7))**2
pamag = parmmeg + (dmaxi())**2
rmumag = rmumeg + (dmax2(i))**2
100 continue

pmeg = sqri(pmeg)
rmeg = wqri(rmag)
peuEDag = sqri(prmeg)
rmumeg = sqet(rmmoeg)

120

C

c
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¢
c

pauth = (pmumnag - pmag)/prxmag
fauth = (roxmag - rmag)/rmxmag

SVD_SOLVE

Include svd_sove.for

Autnas.for

a6n6aan
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AUTRIMA.FOR

27 Sep 89 SMZ
implicit reat*8 (s-h,0-2)

parameter ( gw w 19000, cg = 27,208, bail =63.7)

p (span =29.0,chord= [0.937,wing= 300vtail = 54.75)
parameter (Bomin = -2 lemag= 25 Mimin = - 20, iimax= 20)
parameter (rlimins - 20, rfimaxe 20, ibtmin =-25,lhtmax= 25)
parameter (rbtmin=.2S rh 28, rudmin= - 30, rud 30)
parameter (rlemins .25, rlemazw 25,0im 3, 1415927)
parameter (of ® 4 meize = 4)

real®8 a(4.4),deita(4).b(4).2er(6)

real®8 ranmin,ranmax,rud.fie.rle LI the rix

real®8 alpha, beta,ra,rbrd,min( 3), max(3)

real*8 inx(20,6),ibe(20.6).idz( 20,6}, coetz( 20.6).nofncz(6)
real®8 infle( 20,6),iblle( 20,6).idlie( 20,6).coeflie( 20,6)
real®8 iacie(20,6),ibeie( 20,6),idrie( 20,6), coelrie( 20,6)
reai®8 iarud(20,6),ibrud( 20.6), idrud( 20.6), coelrud( 20.6)
real®8 inrfi( 20.6),5brf)(20,6).ide ) 20,6), coetr(( 20.6)
real®8 iarht( 20,6),ibebi( 20,6), idrb( 20,6), coelrhit(20.6)
real®8 ialfi(20,6), HI(20.6), i) 20,6),coefif) 20,6)
real®8 inlht(20,6),ibib(20,6).idihe( 20,6),coefiht(20,6)
real®8 nfle( 6)afrie(€).alrud(6),0trB(6).000 6), cfle(6)
real®8 nfrbt(6).allh(6),ctrie(6), cf2(6),cfrud(6),cfrfi()
real®8 ofii(6),clrin(6).<R(6),t(6),raip, phi L.pbi 1
real*8 crie(6),ca(6),crud(€)crfi(6).clie(6)

real®8 cl)(6),crin(6), cihue(6),c1(6), delenn, okt

real®8 inda.indh,indd

reai®8 fay,phi2, phidr, ecr

chbaracter®20 trim,phicon,drag,detsilauth

external 3
extornual poly

The purpose of this program is to search for trim solutions for
the F-16 gven a rudd-r failure and the sagle of deflection st which
this surface is locked into » “bardover” failure. Cosficients {or the
computation of serodynamic foreas must be supplied as dats files
which) arw called into subroutines in this program. This p

.nqmm«wmummw
boide. The flight path angle is specified at 2ero. Wings level flight

is not enforced and 50 in genecal the roll sngle will bave s non zero
value,

The trie routine uses the (oli~eing control scheme to search (or trim.
The leading edge flaps can be controlied but are licited Lo symetric
deployment, the Gaperons are limited to wikzation as silerons

and the borisontal tad is differentisl 50 thet it scts both as a0
slovator snd s an alleron.

The control axrfaces i the delta vector are bumbered s
(ollows:

L Leading Edge Flaps

2 Allerca

1. Hortsontal Tad Aderca
4 Horizontsl Tadl Elevetor

This versio of the progras will writs the specified informatioo to dats
{iles which can be evahusted in sither SURFER or GRAPHER.
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m!‘(&l) sen
write(4,°) ' AUTRIMA FOR'

write(6,%)
write(§°) "

write(4°) "'

write(6,°) Please enter the apecified rudder defl in degs:’
read(5,*) rud

write(6°)"*

write(6,°) "Plesse enter the min alpha in degs:
read(5,°) alpaain

write(6,°) **

write(6,°) 'Please enter the max alpba in degs:
read($,*) aipmax

write(6,%) "

write(6,*) ‘Please enter the index for alphs: '

read(5,°) inda

wnte(4°) "’

write(6,*) "Please enter the min beta in degs: ’

read($,*) betmin

write(6,%) '

write(6,°) ‘Please enter the max beta in deg: °

read(5,*) betmax

write(4°) **

write(6,*) Please enter the index for beta: *

read($,*) indd

write(6°) "’

write(6°) "’

write(6,°) ' The currently selected ranges {or trim investigation
x are as {ollows:’

write(4%) "'

write(6,*) ‘Failed surface: Rudder’

write(6°) **

write(6,°) °  Min alpha:’, alpmin

write(6,°) ' Maxaipha:’, slpmax

write(&°) "*

write(6,*) '  Min beta:’, betmia

write(6,°) ' Max beta:’, beumax

write(6,°) ‘Enter a flename (or trim solutions:’
read($,5000) trim
opea( 12 fike = trim, status = ‘new’)

wriie(6,*) "Enter a filename (or Phi contours:’
read($,5000) phicon
open(1L.fike = phicon, status = ‘new’)

write(6,°) "Enter s filename {or Drag coef contours:’
read(5,5000) drag
open(1Q,filemdrag statue = 'new’)

write(6,*) "Enter a filename for Mean sileron contours:’
read(5,5000) detaid
open(9,file = deisi status = 'new’)

write(6.°) Enter & flenams control authority cootours:’
cead($,5000) suth
open(8,file= auth.statis = ‘new’)

writs(6°)
write(4*) ‘Opening fie’,trim

Initislise the min snd mex comparison vectors

min(1) = Besmin
min(2) = rfimin
min(3) = bimin
man(1) » lemax

man(2) = rfimax
max(3l) = bimaz

raip =((alpman-aipmin)/inds) + 1
&-O(M)/ha) +1
=

(=0
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all dynpews( mach.qbar)
wnite(6.*) The value of the dynamu pressure o.'. qbar

Call n the polynomml predictor equatons [or the {orces
and moments.

e nnan

call fixzer(iaz. bz, idz. coefz. nolncz )

cail (ixtie(iale, e xille. cocflie,nflie )

call (oxre{incte.sbrie. xicle. coelrie, nirte )

call fizrud(isrud, ibrud. drud, coefrud, nfrud)
call (orfi(iarflibeflidrfl. coelrfl.nlr0l)

call forb(iachiibeti, dri. coelrbt.nfrise)
calf fixif(iadfl,ibifl, i}, coef¥l,nfHT)

call fixihi(iaibe.ibibt, xdibe, coeflbe nftb )
wnite(6,*) Tinmbed resding liles’

beta = betmin
do 200 j= Lrd
alphs = sipmn
do 300 k= | reip

calf zero(qbar.aipba. beta.iaz, iba.idz, coefy. nofnaz. oz,
X a)
call failed( gbar.aipha, beta,rud.isrud ibrud. sdrud coefrud,
x nfrud, ofrud. crud)
< call throttle( thetx, thilx, cox, ctz.aipha)

alpe = aipha® (py/180)
betr = beta® (pv180)

¢ Initial estimacs (or thets is alphs

thir] = alpr
salpba = sin(alpe)
calpha = coa(slpr
sbetz = sin(betr}
cbeta = cos(betr)
ctht = cos(ihtrl)
wip = tan(alpr)
thet = tan(betr)

¢ Calculste the sero [orces in the body 1 and X ws respectively

(ax = salpha®(-1°cfx(2)) + calpha®(-1°cf2(1))
(ax = calpba®(-1°cfe(2)) - saipba®(-1°cfe(1))
Loy = (cf3(3) +ctrud(3))
¢ Estimste Phi tros side foroe equation
{gw = tay/(-1°gwe cate)
of (fgw.51.).0) then
goto 600
cioe i (fgwR.-1.0) then
goto 609

clos
philr = asin(fgw)
endd

o

50 cphi = cos(philr)
ctixt = con(ther1)
it = sin(ther1)
fx = gw*othet - tax
il = philre(180/pi)

Construct the lefthend side of the linsar problem with known
foros and mossent deta.

The b veator

the (ollowing (oroe and by row

1 Normal
2 Phch
1 Rol
4 Yow

b(1) = -1°gw*cphi®cuit - faz
doM0i= L3

mwml+3

amisl

(n) = -1° (ctx(m) + ctrud(m))
continue

anc6o6annannaan

¢
¢ Assemble the A matrix to be wed in the inear problem.
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This matrix is composed of the control dervauves of the
controis that will be used (o effect 2 tnm solution.

call flaper(qber.aipha.beta,iarfl ibefl,idrfl coefrflarfl
x ofrfl,crfl)
call heztail(qber,aipha,beta, iartit ibrbt, ideht coefrbunrht,
x cfrhtarin)
call laper(qber.aipba,beta,islfl, biflidif\, coe)fL nifl,
x ofifL.cifl)
call brziail(qbar.alpha, beta,ialbe,ibibe. idlbt, coeflbe. nibt,
x cflht,clht)
call rlef(qbar alpba beta.iarie,ibrie,idrie.coefrie,
X nrie.clrie.crie)
call ef(qbar, alpha,beta,ialle, iblie.idlle,coeflle,
x nlle,cllie,clie)

Control derivatives ace put in the body z axe

a(L1) = -1°(cflle(2) + cfrie(2) )*salphs
x -1*(cflle(1) + cfrie(1))*caipba
a(12) = -1°(cfrfi(2)<(1(2))*salpha
x 14 (L) 1)-ciN(1))*calpba
a(1.3) = -1*(clrhe(2)<clibe(2))* saipha
x -1 (cfri(1)-cfibe(1))*calphs
a(L4) = -1°(cfrhe(2) +cflhe(2) ) *saipba
x “1%(cfehit(1) +cfibe( 1)) *caipba

do 8001 = 1.3
m=l+3
n=l+1
2(n,1) = clile(m) +clrie(m)
a(n2) = cfrfi(m)-<fi(m)
a(n,3) = ctrht(m)-<ftht(m)
3(n4) = clrbt(m) + cfibt(m)

Soive the tinear problem which has been set up. Note
that the subroutine recurns + different value of the a matrix.

call svd_soive(a,b.delea,nl,nf meize, meize)

Sum up side {orces dus Lo control deflections

fay = (c£2(3) + cfrud(3))

(ay = (ay + (deita(1) * (cfla(3) +clrie(3)))
(ay = lay + (delta(2) * (ctrfi(3)-<fI0(3)))
lay = tay + (doita(3) * (clrbu(3)-<fby(3)))
(ay = [ay + (deka(4) * (crbe(3) +cfin(3)))

Sum up Nocmal (oroes due Lo control dellections

(azt = salpbs®(-1°cfx(2)) + calpba®(-1°cl2(1))
a(L1) = -1°(cllie(2) + clrie(2))*saipha

1 c1e(clll1) +ctrie(1)) *caiphe

¥12) = -1%(

x 19 (cfrbe(1) + cit(1))* calpha

(azt = faat + (deita(1) * o(L1))
faxt = faxt + (deitn(2) * o(12))
(ast = fast + (deita(3) * o(13))
faxt = (ant + (dalta(4) * o(14)
Adjust Pich angle for the asw roll angle

thtad] wialp®(-1*tant/gn) + (theticaipbe)*(-1*tay/gw)
i (%..LO) thes

go%0
eclss if (thead) .- LO) then
§oto 608

clse

ther2 = asintheadf)

endil

ctit = coe(thtr?)

Adjust Roll sngle (or osw theta snd control deflections
tgw = layl(-1*gw*ctte)

i (fgw.g1.1.0) then
goto 600
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else if ([gw.iL-L0) then
goto 600

else

pbi2r = aun(fgw)

endif

errl = sqru((philr - phiZr)**2)
err2 = sqry((thtrl - thr2)°**2)
write(6°) The error a:".err

Determine if new phi angle is within
.0001 radisns of Grst approximation

6 6noon

if (2g1.21) then
gowo 528

else if{err1gt.0001) then
philr = phi2r
thtrl = thar?
=2+ 1
goto 50

eise if(err2 gt 0001) then
philr = phi2r
thir] = ther2
ez +1
gto S0

endid

D ine il the computed soh
mwmmmmmmdﬂuwm
apeoprists file.
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do 4001=12
if(deita()imin(l) .oc deita(l).grmax(l)) then
goto 500

400  contiove

aana
O
>
>

e = deita(3) + deka(4)
Dt = - 1*(daka(?) - deks(4))

Pt rbu.m(:i) -oc. rbt. gt max(3)) then

ehd(ll.l.m(!) .or, bt gtmaz(3)) then
goto 500
endil
<
50 .
phi2 = phuZr*(1804p)
theta = ther2* (180/pi)

delmn = (dekta(1) + deka(2)V2

oft m crie(2) +ex(2) +arud(2) + xfi(2) +clle(2) +
x cM(Z) +cr(2) + cin(2)

Computa the soluticn ares as of this pess.

o600

tmtel
sinares = t*(inde*indb)

[
¢ Cakculsts remsining pitch and roll suthority

call suchor(cfifl cirfl,offin clrin. deka, cfle, cfrie,
3 pouth,rauth)

o

noaona

Write output to (e for plotting in Grapber or Surfer

constraints on




500 conunue
[

<

518 continue

¢ write(4*)
..--------------..---."--------.---------
¢ write(4,°) *
¢ WRITE(4,*)

NO SOLUTION AT THIS POINT

<

c
¢ write(6°) "’

¢ write(6°) The value of alpba is: ‘.alpha

¢ write(6°) The value of beta is:  "beta

¢ write(6°) The rudder deflection is: ',rud

¢ write(6) "

¢ WRITE (6°) THE VALUE OF THE ROLL ANGLE IS:",phil
¢ write (6°) "

c write(6,*)

ELL TR T LTI T Y P EY T T T T T T Y Ty P gy pnpapaye
< write(6°) *
¢ WRITE(6%)

DEFLECTION LIMITS EXCEEDED’

write(6,°) “SIEEIIETIIIIIITIIIIIIIISIITIITIIIIISIIISS’
write(6°)

write(6.°) 'LEF deits(1)

write(
write(4°) 'FA’ defta(2)
write(§°) **

a

eennonnnan
”
Sllll
©
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R

write(4,*)

c write(6°)’ SOLUTION WILL NOT CONVERGE AT THIS
POINT
¢ WRITE(4*)

goto 328

600 conlinue
¢ write(6.*)

¢ write(4,°) ' Steady state kift condition vioiated’
c write(4,°) ' Selecting oext alpha value’
[
L4

write(4,%)

alpha = aipha + inde

?ao continug
) write(12,*) “The data search is compiess.’
close(12)
close(11)
close(10)
close(9)
dose(8)
write(6.*) ‘The dets search is complets.'

123

[+

5000 Format(a20)

10000 Format(5.2)

20000 Format(4(2x.N10.7))
30000 Format(4(14.2))

40000 Pormat(S(f4.2))

50000 Format(4( xf12.4))
60000 Format(19.5,3(1x,19.5))

sop
end

LLEF

® 6aaa6

subroutine lief(qbar,alpbs.beta, ialie, iblie. idlie. coeflie,
x nile,cflie,cile)

The purpose of this program is Lo calculate the control
derivatives {or the ieft leading edge flaps given values
for g, alpha, beta

o6 60no0a6a

implicit real®8 (a-h,0-2)

parameter ( gw = 19000, cg =27.208 htail=63.7)

parasmeter (span =29.0.chocd w 10.937,wing = 300,vtad » 54.75)
real®8 ialle(20,6),iblle( 20,6), idlie( 20,6), coeflie( 20,6)

real®8 alpha, beta,x(3), clie(6),cflle( 6),aflle(6)

do 100iw L6
clle(i) = coeflie{2i)*alpha + coeflie(1.i)*beta
x + coeflle(1,i)
100 coatinue
c
c

cflie(1) = clie(1)*qbac*wing

fanoa6o

x nele,cfrie,crie)

¢
¢ The purpose of this program is to caiculats the coatrol
¢ decivatives (or the right ieading edge Gaps given values
¢ lorq sipha, beta.

¢

¢

c

c

implicit real®8 (s-h,0-3)

parameter ( pw = 19000, cg =27.208 bad=63.7)

parameter (span =29.0,chord w 10.937,wing= 300, viad w $4.7%)
real*8 isrie(20.6),ixrie( 20,6).idirie(20,6). coalrie(20.6)

real®8 alpha, beta.x(3),crie(6).ctrie(6).0trie(€)

do 100im L6
crie(i) = cosfrie(2i)*aiphs + coefrie(.i))*beta
x .+ cosfrie(Li)
100 coatinue
¢

[

cfrie(1) = crie(1)*qbar*wing
frin(2) » *

a
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AUTHOR

subroutine author(cfifl.cfrfl, cfibt, cfrhe deita, cllle,cfrle,
x pauth.rsuth)

implicit real®8 (a-h,0-1)

The purpose of this program is to calculate as & percentage
the pitch and roll controll authority remaining alter the A/C
has been trimmed to achieve equilibrium.

parameter ( gw = 19000, cg =27.208, btail»63.7)

parameter (span = 29.0,chordw 10.937,wing =300, veail = 54.75)
parameter ({imax= 20, htmax= 25 lefmax = 25)

ceal*8 dmaxi(4),dmax2(4),d1(4),d2(4),dclta(4),clle(6),cfrle(6)
real*8 cfifi(6),cfri(6), fbt(6),clrbt(6)

rmag= 0
pmag =0
rmxmag = 0
pmxmag = §

d1(1) =(cflie(4) + cfrie(4))*delta(1)
d1(2) » (cAefl(4)-clifi(4))*deita(2)
d1(3) = (cfrbu(4)-clibe(4))* deita(3)
d1(4) = (ctrbt(4) +chibi(4))*deita(4)

d2(1) m(cflle(S) + clrie(5)) *debea(1)
d2(2) = (clei(S)-cfY(S))* deka(2)
d(3) = (clrbu(S)-cOin($))* dokta(3)
42(4) = (ctrbu(S) +cfib(S))* daka(4)

dmaxi(1) = (cllie(4) +clrie(4))* lefmax
dmaxi(2) = (clrti(4)<0fi(4))" Omax
denaxi(3) = (cirhe(4)-cfibe(4))*bumax
dmaxi(4) = (cfrbe(4) +cfibe(4))*bmax

dmax2(1) = (cfie(S) +clrie(S))* lefmax
dmax2(2) = (ctrt(S)-<)(S))* fimax
dmax(3) = (crbi($)-cfihe(5))*bumax
dmax2(4) = (Lrtu(S) +cOibi($))* bimax

do 100im1,4
paxag = pmag + (41(1))*°2
rnag = rmag + (42(1))**2
pmmmag = prmag + (dmax!(i))**2
roumag « rmxmseg + (doax2(i))**2

100 continue

<
[

pmag = sqri(pumeg)
rmag = sqry(rmag)
pmEmag = sqri(paumag)
g = sqri(rmameag)

pauth = (pmmmeg - puag)/Pameg
rsuth = (noEmeg - rDeg)/rEEEeg

a neoan 60onoa o60a0aa a n
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FIXLLE
include (uxdie.lor

FIXRLE

include fixrte.foc

FIXRUD

. eeeces

include farud.loc

include fixrflfor

inciude fxrtit.for

include let.for

ZERO

include flaper.for

HRZTAIL
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parameter ( gw = 19000, cg = 27.208 htail=63.7)
parameter (span =29.0,chord = 10937, wing = 300,vtail w 54.75)

parameter (ak = 10000)

p i = 2,k 25, fimin =- 20, fNimax= 20)
pacameter (rflmin=-20,¢f) 20,Ihtmine. 25,1k 25)
p (chumin=-25,rh 25,indll = LQindd) = 1.0)

parameter (rieminw-2 riertax=25,pi=3.1415927)
parameter (nf » 4 meize = 4)

real*8 a(4.4).deita(4).b(4),zer(6)

real®8 ranmin,rsnmax.rud,le.rie,rfLIfL bt rivt
real®8 alpha,beta,ra,ch,rd, min(4),max( 4),deimn
reai®8 iaz(20,6),ib2(20,6),idz(20,6),coetz(20,6),nofncz(6)
real’8 ialle(20,6),ibde(20,6)vidlie(20,6),coeflie(20.6)
real*8 iacle(20,6),ibrie( 20,6),idrie(20,6),coelrie(20,6)
real*8 iarud(20.6),ibrud(20.6),idrud(20,6),coelrud(20.6)
real*8 iarf1(20.6),ibrf}(20,6),idrf1(20,6), coefr1(20,6)
reai*8 iarht(20,6).ibebt(20.6),idrbt(20,6), coefrht(20,6)
real*8 ialf)(20.6),ibif1(20,6),idiN( 20,6),coelifl( 20,6)

real®8 ialht(20,6),ibiht(20,6),idlht(20,6).coeflbt(20,6)
real*8 nllie(6):nfrie(6),alrud(6).nlr(i(6).nI0(6),cflle(6)
real®8 nfrb(6),aflbi(6),clrie(6),cf2(6),clrud(6).cfrfl(6)
real*8 cflfi(6).clrhi(6),cflbe(6),ct(6).raip,philphilr
real®8 crie(6),c2(6),crud(6),crfl(6).clie(6),sbet.tbet, cbet
reai*8 cifi(6),crbe(6), cthy(6),c(6), cth.sthe, theady

real*8 fay, betmin,

betmax sinarey pauth,rauth
real*8 mda.mdb.mdd.pth.m.dld(Z),:lbet(MZ)

character*20 trim,notrim, phicon,drag delailauth

external 3
external poly

The purpose of this program is (o seaech for trim solutions foc
the F-16 given » {ailed coatrol surtace and the range over which
this surface is locked into » "hardover” failure. The fhght condition
wmmnmnmm
Coeficiants for the comp y forces must be supplied
-Mﬂ-Mnaﬂmmnhm
This progrs sesumaes a stesdy stats condition of straight
mwmmmwm All wix control surfaces

dendy io this program with the lefs varying through theic
nn'nomh'um
Wings level flight is not eoforced in
this version of TRIM and so the roll angle will have a non zero value
The Qight path angle is specified at zeco. This version of the program
will write the output alphs beta specs where trign sohutions exist to 8
data file (or use in either SURFER or GRAPHER.

write(6,°)
write(6°)
write(4,")
write(4°) *’

write(&,°) Plasse snter the speciBed rudder defl in degs:'
read(3,*) rud

write(6°) "’

write(4,*) 'H-n entar the min sipha in dege: °

AUTRIMC.FOR'

writa(6,°) Plosss enter the max aipha ia dege: *
read(5,%) slpmen

write(64°) "’

write(6,°) "Plames entur the index for siphs: *
rend(5,*) inde

wrice(4°) "’

write(6,°) Pleass enitar the win beta in dege: *
read(3,*) betmin

wra(d?)"*

write(6,") Plense enter the max bets in degs: '
road(5,*) betmest

write(4°) "’

write(6,*) "Please entar the index (or beta: *
read(3,*) indd

write(6.%) *’

wrice(6°%) **

write(6.°) ' The currently selected ranges {or trim ipvestigation
x are o8 follows:’

write(6°)

write(4*) Foiled surtsce: Rudder

wria(6°)"*
write(6*)'  Min sipbe:’, sipmin
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write(6,°) °  Max aipha:’, alpmax
write(4°) **

write(4°) ' Min beta:', betmin

write(6,°) " Max beta:’, betmax

The control surfaces in the deita vector are numbered as
follows:

L Port Flaperoa

1 Starbosed Flaperon

3. Poet Horizontal Tad

4 Starbosrd Hocizontal Tail

write(&4°) ‘Enter s (ilename for rim solutions:’
read(5,5000) trien
open(12fike = trim,statue = new’)

write(6,*) 'Enter a filename (or Phi contours:’
read($,5000) phicon
open(11.file=phicon,status ='new’)

write(6,*) "Enter » filename for Drag coef contours:’
resd($,5000) drag
open( 10.file = drag statim = 'now’)

write(6.°) ‘Enter a filename for Mean aileron cootoun:’
read(5,5000) delad
open(9,file = delad, status = ‘new’)

write(6,°) 'Enter a (enams (or control suthority contours:
read($,5000) suth
open(8.file= suth, stati = 'Dew”)

write(6) **
write(6,*) 'Opening file’trim

min(1) = fimin
@in(2) = rfimin
min(3) = hymin
min(4) = chimin

max(1) = imax
max(2) = rfimax
max(3) = bhumax
max(4) = rhimex

initialize the ranges

ralp =({alpmas-eipmin)inds) + 1
td ={(betraax-betmin)/indb) + 1
trie = ((rlomax - rlemin)Andrf) + 1
riie w ((Vemax - Semsin)}indl) + 1
1= 9

t=®

o=l

call dynpras(mach,qbar)
write(4,°) The valus of the dynamic pressure is:', gbar

Call in the polypomial preds quations for the forces
and moments.
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X

sipamia
do 300 k= Lralp
Assign Leading Edgs Flap deflections

dief(1) = flef
dief(2) = rief

call lef{qbar.aipba.lie,rle.cllle,clrie,ialleibile.idlle,
ba&dmco-ﬂ&nﬂi&hd&imm’ coelrie,nfrie, clle,
crie,

call zero{qber,alpha,betaiaz.ibz,idz.coetz.nolncz, cfz.c2)

call (ailed(qbar,aipba, beta,rud,iarud,ibrud,idrud,coefrud,
nfrud,cfrud,crud)

write(6°) The vafue ol aipha is: 'aipba
write(6°) The value of beta is:  “beta
write(4,*) The rudder deflection is: 'rud

alpr = aipha®(pi/180)
betr = beta®(pi/180)

Specily the Flight Path angle equal to zevo
which impilies first estimate of theta is alpha

thir = sipr
saiphe = sin(slpr)
caipba = cos(alpr)
sbeta = sin(betr)
cheta = cos(batr)
ctht = cos(thtr)
talp = tan(aipr)
thet = tan(betr)

Caiculats the sero (orces in the body 1 and X axis respectively

faz = salpha®(-1°(cf2(2) +cflle(2) +clrie(2)))
+ calpha®(-1°(cty(1) + cffie(1) +cfria(1)))

fax = caipha®(-1°(cfa(2) + cfie(2) + cfrie(2)))
- saipba®(-1°(cfa(1) + cflie(1) + clrie(1)))

fay = (c3(3) + cfile(3) + clrie(3) + cfrud(3))

fgw = tay/(-1°pwctie)
if (fgw.gL1.0) then
600

goto

cloe i ((gwie.-10) then
goto 600

clse

philr = asinfgw)

endif

cphi = cos(philr)
ctht = cos(thtrl)

phil= Pﬂh‘(W)

Coastruct the lefthand side of the insar problem with known
foros and mowent deta.

The b vector contains the lollowing forve and moments by row

1. Normal
2 Puch
1 Roll
4 Yw

(1) = -1°gur’cphi®cuixt - (az
write(4°) (1)
do0lwt)

mwle)

anwist

b(n) = -1° (ctx(m) + clie(m) + cfrie(m) + cfrud(m))
700  continue

<
¢

Assemnbie the A matrix t0 be used in the linear problem.
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This matrix is composed of the controi derivatives of the
controls that wili be used to effect a trim soluton.

anlhp«(th cfLibeiLidefl coelcflart

x
call WMMM&MMLMM
x

call mmgmmmmmm
 §

call brauail(qbar,sipha,beta, isibiblbe idIbt, coeflht, b,
x  cfibtobi)

3(L1) = - 1°cli)(2)*salpba - 1°cfil(1)*catpba
8(L2) = -1°c£fi(2)*saipha -1°ctrfi(1)* calpha
8(13) = -1%cfihe(2)*salphs -1°cfihe(1)*caipha
8(14) = -1*cirht(2)*salphs -1°ctrbt(1)* calpha

do 8001 = 13
m=!+)
nml+l
a(n,1) = cfifi{m)
a(n2) = cfrli(m)
3(n3) = cfihy(m)
a(n.4) = cfet(m)

Solve the tinear problem which bas been set up.
call svd_solve(a,b,delta.nl.nf meize, meize)

Sum up side forces dus to control deflections

Lay = (cf3(3) + cflie(3) + clrie(3) + cfrud(3))
(ay = fay + (delta(1) * cBO(3))
{ay = fay + (deita(2) * tc(3))
(ay = Cay + (delta(3) * cfib(3))
oy = tay + (dekta(4) * ctrtn(3))

Sum up Normel forces dus 1o control deflections

fazt = salphe*(-1°(ct5(2) +cfe(2) + ctrie(2)))
X+ calphe®(-1°(cta(1) + cfie(1) + ctrie(1)),

a(1,1) = -1°c(2)*salpha - 1°c00(1)" calpha

¥(1.2) = -1°cfrfi(2) *salphe -1°cfrfl(1)* caiphe

8(13) = -1°cfibn(2)* sniphe -1° clibe(1)* calpba

(1,4} = -{°clrbe(2)*saipbs -1°ctvbe(1)* calpha

(azt = fazt + (Wl) a(L1)

faxt = faxt + (. 12))

(ant = (ast + (deka(3) * (13))

fazt = (axt + (deita(4) * a(1,4))

Adjust Pitch angle for the new roll angle

thiad] mtalp®(-1*fax/gw) + (tbet/calpba)* (- 1*fay/gw)
i (m&no then

ot

cloe if (theadjie.-1.0) then
goto 600

cles

thtr2e ssin(thtad))
endif
aht = cos(thtr?)

Adjust Roll sngle tor new theta and cootrol deBections

fgw = tayi(-1°gor* ctixt)

i (fgw.g. 1.0) then
oo 08

cloe if ((gwi.-10) then
$oto 600

L}
phi2r = asin({gw)
ondif

el = sqey((philr - phi2r)**2)
a2 = sqrti(thir] - ther2)**2)
write(6,°) "The ervor i’ .err

Determine if osw phi sngle is within
0001 radians of Srst approsimation
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400

<
¢

if (2.31.21) then
goto 525
clse i{(errl. gt 0001) then
philr = phi2r
thiry = tha?
1wz +1l

soto S0
cise if(erv2.g1.0001) then
philr = phir
ther] = tha2
1mg+l
goto SO
endif
Determine if the computed solution violstes constraints on
control surface deflection limits and write the data to the
apropriate file.
do ¥00iwm14
it(detta(l).lLmin(l) .or. defta(]).gr.max(l}) then
goto 500
eise
endil
continue

450 continue

N 6a6o6o

Phi2 = pbi2e*(180/pi)
thets = thir2*(180/pi)

Chieck 10 see if this is the (irst time this point has been
found if so g0 1o next aipha

if (cv.eq O0) go to 485

dodTSimLov
if (aibet(il, 1).0q.8ipha snd. albet(i.2).0q.beca)

z goto 328

478 continue

[
-]
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albet(cv, 1) = alphe
albet(cv,2) = beta

Coempute the soktion aces as of this pass.

sinaces = ov*(inds*indb)

wrke(62) "
writa(6,°) ‘The value of sipha is:  ".aipha
write(4°) The vaiug of beta is:  "bets
write(4.°) The rudder deflaction is: ".rud
wriee(6*) "
write(6.°) “The rlef deliection is: riel

e poL 48
write(&*) The fief deflection is: ' lel
wriea(4*) **

WRITE (6*) "The vaiue of the Roll anghe is:’.pbi2
()"

WRITE (6°) "The valus of the Pitch Angle in2’,theta
writs (6°)°°

write(6.°) ° A solution exists at this poiac’
vrb(‘s')”

write(
write(6*) 'LPL" deka(1)
writs(6°)*’

Write output to file for plotting in Grapher or Surfer

write(12,60000) beta,alpba,rud,sinares
writs(11,60000) beta,alphe.phi2,rud
write(10,60000) bets,siphe,cdt,rud
write($.60000) beta.aipba, deimn,rud
write(4,60000) beta.sipha. pauth, reuth

515 continue
¢ write(6,°)
EII T I PR R PR Y P R IS PRI R Y T Y
ssensas’
[ write(4°)"  NO SOLUTION AT THIS POINT
¢ WRITE(&*)
YT Y PR TPR Y PEE YRR PR YRR PRI AL YR
AT T
00328
<
<
525 continue

c

< write(6,%)

KT T YT Y72 YRR PR PR R PP P R L L Y L)
ssnsess’

¢ write(6,°) °  SOLUTION WILL NOT CONVERGE AT THIS
POINT
c WRITE(6.°)

TIPS PFT YRR AT T ESR S REE R LR E L L LY g )
seusnsew’
<

goto 328
600  continue
¢ write(6,*)
¢ write(6,*) ' Steady state it condition violeted®
c writs(6.*) ' Selecting next sipba vaiue'
¢ wrie(4*)
c
325 aipba = aiphs + inde
c
¢ Reinitialize 3
13
31=0

close(12)
dose(11)
close(10)
cdose(9)
close(8)

ft0o0no6nn

write(6,*) "The dats search is completa.’
write(6,°) “The total sohution ares is:' sinares
3

[
5000 Formet(a20)

10000 Format((5.2)




¢ ¢
c FIXZER c
< ¢
c ¢ P
subroutinie (ixzer(iaz,iba,idz, coefz, nofncs) c
c c
c resl*8 function (3(jxiaib.id.i_fcn)
¢ ¢
c FDQALE ¢
c [ POLY
< [
subroutine fixile(ialle,ibile,idile,coeflie,nflie) ¢
¢ 3
c reai*8 function poly(nfnc.x)
¢ [
c FIXRLE c
c ¢ SVD_SOLVE
c ¢
subroutine [ixrie(iarie,ibcle,idrie, coefrie,nirle) c

herertine svd_solve(a,b.x.n.m np.mp)

FIXRUD

anoaao

subroutine (ixrud(iarud,ibrud,idrud, coefrud,nfrud)

FIXRFL

anooaan

subroutine fixrfi(iarfl.ibefl,idefl, coetrfl,nlrfl)

66000 n

subroucine aifi(ialf],ibifl,idif, coelifl,ni)

oanaoaan

subroutine fixrhe(lacbeibebit,idrist. coefrhe.nfrit)

fconnaoon

subrouting Gxihe(ialht, ibiist, idib, coelibt,nflhe)

N OnNDOOO

fhe.0l%e iacte ibrte.ided
x criediel)

onnonoan

subroutine sero(qber.siphe,beta,ias,ibe,ide,coefy,noftcs, ofy, cz)

FAILED

anonnannonaon

subrouting Geper{qbar,sipbe, beta.iacfl,idefl,idrfl, costifl,
nefl ofrfl,ceff)

HRZTAIL

aanann

subroutine bratail( gber,sipha, beta,isrbt ibrbt.idehe, coefri,
orbe,cfrbe,ert)
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